設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)M>0,使|f(x)|≤M|x|對(duì)一切實(shí)數(shù)x均成立,則稱f(x)為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù):
①f(x)=2x;②f(x)=x2+1;③f(x)=sin(x+
π4
)
;④f(x)是定義在實(shí)數(shù)集R的奇函數(shù),且對(duì)一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是“倍約束函數(shù)”的是
 
.(寫出所有正確命題的序號(hào))
分析:本題考查閱讀題意的能力,根據(jù)“倍約束函數(shù)”,的定義進(jìn)行判定:對(duì)①f(x)=2x,易知存在K=2符合題意;對(duì)于②可以利用絕對(duì)值的性質(zhì)將不等式變形為|x|≤m;對(duì)③特值即可解答;對(duì)于④,通過(guò)取x2=0,如此可得到正確結(jié)論.
解答:解:∵對(duì)任意x∈D,存在正數(shù)K,都有|f(x)|≤K|x|成立∴對(duì)任意x∈D,存在正數(shù)K,都有 K≥
|f(x)|
|x|
成立
∴對(duì)①f(x)=2x,易知存在K=2符合題意;
對(duì)于②,顯然不存在M都有|x|≤M成立,故B錯(cuò);
對(duì)于③,當(dāng)x→o時(shí)
|f(x)|
|x|
→+∞,故不存在常數(shù)M>0,使|f(x)|≤M|x|對(duì)一切實(shí)數(shù)x均成立;
對(duì)于④,當(dāng)x=0,因|f(x1)-f(x2)|≤2|x1-x2|得到|f(x)|≤2|x|成立,這樣的M存在,故正確;
故答案為:①④.
點(diǎn)評(píng):本題屬于開(kāi)放式題,題型新穎,考查數(shù)學(xué)的閱讀理解能力.知識(shí)點(diǎn)方面主要考查了函數(shù)的最值及其幾何意義,考生需要有較強(qiáng)的分析問(wèn)題解決問(wèn)題的能力,對(duì)選支逐個(gè)加以分析變形,利用函數(shù)、不等式的進(jìn)行檢驗(yàn),方可得出正確結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-
3
2
)與b=f(
15
2
)的大小關(guān)系為
a>b
a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)為定義在[0,1]上的非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當(dāng)x∈[0,
1
4
]
時(shí),f(x)≥2x恒成立.則f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-數(shù)學(xué)公式)與b=f(數(shù)學(xué)公式)的大小關(guān)系為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省蚌埠二中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-)與b=f()的大小關(guān)系為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省月考題 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x﹣cosx,則a=f(﹣)與b=f()的大小關(guān)系為(    ).

查看答案和解析>>

同步練習(xí)冊(cè)答案