【題目】已知函數(shù)f1(x)=﹣ax2,f2(x)=x3+x2,f(x)=f1(x)+f2(x),設(shè)f(x)的導函數(shù)為f′(x),若不等式f1(x)f′(x)f2(x)在區(qū)間(1,+∞)上恒成立,則a的取值范圍為_____

【答案】

【解析】

在區(qū)間上恒成立,即恒成立,可化為,由一次函數(shù)的性質(zhì)可求的范圍;可化為,由二次函數(shù)的性質(zhì)求出函數(shù)的最值,可得的范圍綜合兩種情況可得結(jié)果

f(x)=﹣ax2+x3+x2=x3+(1﹣a)x2,f′(x)=3x2+2(1﹣a)x,

f1(x)f′(x)f2(x)在區(qū)間(1,+∞)上恒成立,

即﹣ax23x2+2(1﹣a)xx3+x2恒成立,

﹣ax23x2+2(1﹣a)x,可化為(a+3)x+2(1﹣a)0,

,解得﹣3a5;

3x2+2(1﹣a)xx3+x2可化為2a﹣x2+2x+2,

而﹣x2+2x+2=﹣(x﹣1)2+33,

2a3,即,

由①②可得

∴實數(shù)a的取值范圍是,故答案為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知偶函數(shù).

1)若方程有兩不等實根,求的范圍;

2)若上的最小值為2,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知從甲地到乙地的公路里程約為240(單位:km.某汽車每小時耗油量Q(單位:L)與速度x(單位:)()的關(guān)系近似符合以下兩種函數(shù)模型中的一種(假定速度大小恒定):①,②,經(jīng)多次檢驗得到以下一組數(shù)據(jù):

x

0

40

60

120

Q

0

20

1)你認為哪一個是符合實際的函數(shù)模型,請說明理由;

2)從甲地到乙地,這輛車應以多少速度行駛才能使總耗油量最少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若實數(shù)滿足,則稱的不動點.已知函數(shù)

,其中,、為常數(shù)。

(1)若,求函數(shù)的單調(diào)遞增區(qū)間;

(2)若時,存在一個實數(shù),使得既是的不動點,又是的極值點,求實數(shù)的值;

(3)證明:不存在實數(shù)組,使得互異的兩個極值點均為不動點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年國慶黃金周旅游市場依舊火爆.一旅行社為某旅行團包機旅游,其中旅行社的包機費15000元,旅行團中每人的飛機票按以下方式與旅行社結(jié)算:若旅行團人數(shù)不超過35人,飛機票每張800元;若旅行團人數(shù)多于35人,則給予如下優(yōu)惠:每多1,每張機票減少10,但旅行團的人數(shù)最多不超過60人,記旅行團人數(shù)為每個人的機票錢為y.

1)寫出的關(guān)系式.

2)求旅行社獲得的利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某書店剛剛上市了《中國古代數(shù)學史》,銷售前該書店擬定了5種單價進行試銷,每本單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):

單價(元)

銷量(冊)

1)已知銷量與單價具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;

2)若該書每本的成本為元,要使得售賣時利潤最大,請利用所求的線性相關(guān)關(guān)系確定單價應該定為多少元?(結(jié)果保留到整數(shù))

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域為R.若存在與x無關(guān)的正常數(shù)M,使|f(x)|≤ M|x|對一切實數(shù)x均成立,則稱f(x)為有界泛函.則函數(shù):① f(x)=-3x,② f(x)=x2,③ f(x)=sin2x,④ f(x)=2x,⑤ f(x)=xcosx中,屬于有界泛函的有____________.(填上所有正確的番號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在2012年的自主招生考試成績中隨機抽取名中學生的筆試成績,按成績分組,得到的頻率分布表如表所示.

組號

分組

頻數(shù)

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請先求出頻率分布表中位置的相應數(shù)據(jù),再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第組中用分層抽樣抽取名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試;

(3)在(2)的前提下,學校決定在名學生中隨機抽取名學生接受考官進行面試,求:第組至少有一名學生被考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某市準備在道路的一側(cè)修建一條運動比賽道,賽道的前一部分為曲線段,該曲線段是函數(shù), 時的圖象,且圖象的最高點為.賽道的中間部分為長千米的直線跑道,且.賽道的后一部分是以為圓心的一段圓弧.

(1)的值和的大;

(2)若要在圓弧賽道所對應的扇形區(qū)域內(nèi)建一個“矩形草坪”,矩形的一邊在道路上,一個頂點在半徑上,另外一個頂點在圓弧上,且,求當“矩形草坪”的面積取最大值時的值.

查看答案和解析>>

同步練習冊答案