7.盒中共有9個(gè)球,其中有4個(gè)紅球,3個(gè)黃球和2個(gè)綠球,這些球除顏色外完全相同.從盒中一次隨機(jī)取出4個(gè)球,其中紅球、黃球、綠球的個(gè)數(shù)分別記為x1,x2,x3,隨機(jī)變量X表示x1,x2,x3中的最大數(shù),數(shù)學(xué)期望E(X)等于$\frac{20}{9}$.

分析 先判斷X的所有可能值,利用相互獨(dú)立事件與互斥事件的概率計(jì)算公式分別求出所有可能值的概率,列出分布列,根據(jù)數(shù)學(xué)期望公式計(jì)算即可得出.

解答 解:X的所有可能值為4,3,2,則P(X=4)=$\frac{{∁}_{4}^{4}}{{∁}_{9}^{4}}$=$\frac{1}{126}$,P(X=3)=$\frac{{∁}_{4}^{3}{∁}_{5}^{1}+{∁}_{3}^{3}{∁}_{6}^{1}}{{∁}_{9}^{4}}$=$\frac{13}{63}$,
于是P(X=2)=1-P(X=3)-P(X=4)=$\frac{11}{14}$,
X的概率分布列為

X234
P$\frac{11}{14}$$\frac{13}{63}$$\frac{1}{126}$
故X數(shù)學(xué)期望E(X)=4×$\frac{1}{126}$+3×$\frac{13}{63}$+2×$\frac{11}{14}$=$\frac{20}{9}$.
故答案為:$\frac{20}{9}$.

點(diǎn)評(píng) 本題考查了相互獨(dú)立事件與互斥事件的概率計(jì)算公式及其性質(zhì)、相互對(duì)立事件的概率計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)$\overrightarrow a,\overrightarrow b$是兩個(gè)非零向量,且$|\overrightarrow a|=|\overrightarrow b|$=$|\overrightarrow a+\overrightarrow b|=2$,則向量$\vec b•(\vec a-\vec b)$為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在邊長(zhǎng)為4的菱形ABCD中,∠BAD=60°,DE⊥AB于點(diǎn)E,將△ADE沿DE折起到△A1DE的位置,使A1E⊥EB.

(1)求證:A1D⊥DC;
(2)求二面角E-A1B-C的余弦值;
(3)判斷在線段EB上是否存在一點(diǎn)P,使平面A1DP⊥平面A1BC?若存在,求出$\frac{EP}{EB}$的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)F(x)=f(x-1)+x2是定義在R上的奇函數(shù),若F(-1)=2,則f(0)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知點(diǎn)G是△ABC的重心,A(0,-1),B(0,1).在x軸上有一點(diǎn)M,滿足|$\overrightarrow{MA}$|=|$\overrightarrow{MC}$|,$\overrightarrow{GM}$=λ$\overrightarrow{AB}$(λ∈R)(若△ABC的頂點(diǎn)坐標(biāo)為A(x1,y1),B(x2,y2),C(x3,y3),則該三角形的重心坐標(biāo)為G($\frac{{{x_1}+{x_2}+{x_3}}}{3}$,$\frac{{{y_1}+{y_2}+{y_3}}}{3}$).
(1)求點(diǎn)C的軌跡E的方程;
(2)若斜率為k的直線l與(1)中的曲線E交于不同的兩點(diǎn)P、Q,且|$\overrightarrow{AP}$|=|$\overrightarrow{AQ}$|,試求斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.證明:函數(shù)y=$\sqrt{2x-{x}^{2}}$滿足關(guān)系式y(tǒng)3y″+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=lnx,g(x)=lnx-x+2.
(1)求函數(shù)g(x)的極大值;
(2)若關(guān)于x的不等式$mf(x)≥\frac{x-1}{x+1}$在[1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(3)已知$α∈(0,\frac{π}{2})$,試比較f(tanα)與-cos2α的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積等于(  )
A.40cm3B.30cm3C.20cm3D.10cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的離心率為$\frac{\sqrt{3}}{2}$,且點(diǎn)(-$\sqrt{3}$,$\frac{1}{2}$)在橢圓C上.
(1)求橢圓C的方程;
(2)直線l與橢圓C交于點(diǎn)P,Q,線段PQ的中點(diǎn)為H,O為坐標(biāo)原點(diǎn)且OH=1,求△POQ面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案