已知橢圓C:,A(2,0)為長(zhǎng)軸的一個(gè)端點(diǎn),弦BC過(guò)橢圓的中心O,且,則橢圓的離心率為   
【答案】分析:由橢圓可得:|BC|=2|AC|,AC⊥BC,即可得到|OC|=|AC|,結(jié)合A(2,0)可得C(1,1),再結(jié)合點(diǎn)C在橢圓上與a,b,c之間的關(guān)系求出c的值,進(jìn)而求出橢圓的離心率.
解答:解:∵,
∴|BC|=2|AC|,AC⊥BC,
由橢圓的結(jié)構(gòu)特征可得:|OC|=|AC|,
∵A(2,0)為長(zhǎng)軸的一個(gè)端點(diǎn),即a=2,
∴C點(diǎn)的橫坐標(biāo)為1,即C(1,1),
∵點(diǎn)C在橢圓上,
,∴,即c=,
∴e==
故答案為:
點(diǎn)評(píng):本題主要是借助于向量的有關(guān)運(yùn)算性質(zhì)考查橢圓的簡(jiǎn)單性質(zhì),解決此類問(wèn)題的關(guān)鍵是熟練掌握橢圓的幾何性質(zhì)與解三角形的有關(guān)知識(shí),此題綜合性較強(qiáng),本題屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知橢圓C過(guò)點(diǎn)M(2,1),兩個(gè)焦點(diǎn)分別為(-
6
,0)、(
6
,0)
,O為坐標(biāo)原點(diǎn),平行于OM的直線l交橢圓C于不同的兩點(diǎn)A、B,
(Ⅰ)求橢圓C的方程;
(Ⅱ)試問(wèn)直線MA、MB的斜率之和是否為定值,若為定值,求出以線段AB為直徑且過(guò)點(diǎn)M的圓的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)附加題:
A.如圖,四邊形ABCD內(nèi)接于圓O,弧AB=弧AD,過(guò)A點(diǎn)的切線交CB的延長(zhǎng)線于E點(diǎn).
求證:AB2=BE•CD.
B.設(shè)數(shù)列{an},{bn}滿足an+1=3an+2bn,bn+1=2bn,且滿足
an+4
bn+4
=M
an
bn
,試求二階矩陣M.
C.已知橢圓C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ
,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù),t∈R).求點(diǎn)F1,F(xiàn)2到直線l的距離之和.
D.已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C過(guò)點(diǎn)A(1,
32
)
,兩個(gè)焦點(diǎn)坐標(biāo)分別是F1(-1,0),F(xiàn)2(1,0).
(1)求橢圓C的方程.
(2)過(guò)左焦點(diǎn)F1作斜率為1的直線l與橢圓相交于M、N兩點(diǎn),求線段MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.
A選修4-1:幾何證明選講
如圖,延長(zhǎng)⊙O的半徑OA到B,使OA=AB,DE是圓的一條切線,E是切點(diǎn),過(guò)點(diǎn)B作DE的垂線,垂足為點(diǎn)C.
求證:∠ACB=
1
3
∠OAC.
B選修4-2:矩陣與變換
已知矩陣A=
.
11
21
.
,向量
β
=
1
2
.求向量
a
,使得A2
a
=
β

C選修4-3:坐標(biāo)系與參數(shù)方程
已知橢圓C的極坐標(biāo)方程為ρ2=
a
3cos2θ+4sin2θ
,焦距為2,求實(shí)數(shù)a的值.
D選修4-4:不等式選講
已知函數(shù)f(x)=(x-a)2+(x-b)2+(x-c)2+
(a+b+c)2
3
(a,b.c為實(shí)數(shù))的最小值為m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案