在三棱錐S,。
(1)證明
(2)求側(cè)面與底面所成二面角的大小。
(3)求異面直線SC與AB所成角的大小。
(1)見解析(2)600(3)
(1)∵∠SAB=∠SCA=900
 
(2)

(3)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知三棱錐P—ABC中,PC⊥底面ABC,AB=BC,

D、F分別為AC、PC的中點,DE⊥AP于E.
(1)求證:AP⊥平面BDE;                
(2)求證:平面BDE⊥平面BDF;
(3)若AE∶EP=1∶2,求截面BEF分三棱錐
P—ABC所成兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

四棱錐的底面為正方形,底面,,上的點.
(1)求證:無論點上如何移動,都有;
(2)若//平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示:四棱錐P-ABCD底面一直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E為PC的中點.
(1)證明:EB∥平面PAD;
(2)若PA=AD,證明:BE⊥平面PDC;
(3)當PA=AD=DC時,求二面角E-BD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

5u如圖,平行四邊形中,,正方形所在的平面和平面垂直,的中點,的交點.

⑴求證:平面;
⑵求證:平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在五棱錐P-ABCDE中,PA=AB=AE=2a,PB=PE=a,BC=DE=a,
∠EAB=∠ABC=∠DEA=90°.
(1)求證:PA⊥平面ABCDE;
(2)若G為PE中點,求證:平面PDE
(3)求二面角A-PD-E的正弦值;
(4)求點C到平面PDE的距離

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下面的集合中三個元素不可能分別是長方體(一只“盒子”) 的三條外對角線的長度(一條外對角線就是這盒子的一個矩形面的一條對角線) 是(     )
A..B..C..D..

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

A.2a2B.a(chǎn)2
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

集合A={斜棱柱},B={直棱柱},C={正棱柱},D={長方體},下面命題中正確的是(   )
A.CBDB.A∪C={棱柱}
C.C∩D={正棱柱}D.BD

查看答案和解析>>

同步練習冊答案