在四棱錐中,,,底面,的中點(diǎn),
(Ⅰ)求四棱錐的體積;
(Ⅱ) 求二面角的大小.
(Ⅰ)   (Ⅱ) 
(Ⅰ)在中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133656978268.gif" style="vertical-align:middle;" />,,
,.                       (2分)
中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133657025382.gif" style="vertical-align:middle;" />,
,.          (3分)
所以.  (5分)
.                               (6分)
(Ⅱ)取的中點(diǎn),連結(jié),則,所以平面.
過(guò),連接,則為二面角的平面角. (9分)
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133657212327.gif" style="vertical-align:middle;" />為的中點(diǎn),,,則.      (10分)
,所以,即.
故二面角的大小為.                                (12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,平面ABC,CE//PA,PA=2CE=2。 
(1)求證:平面平面APB;  (2)求二面角A—BE—P的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)如圖,在四棱錐P—ABCD中,側(cè)面PAD是正三角形,且垂直于底面ABCD,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,M為PC上一點(diǎn),且PA//平面BDM,
(1)求證:M為PC的中點(diǎn);
(2)求證:面ADM⊥面PBC。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)如圖,四面體ABCD中,O是BD的中點(diǎn),
ABD和BCD均為等邊三角形,AB=2,AC=
(1)求證:AO⊥平面BCD;(2)求二面角A—BC—D的大;
(3)求O點(diǎn)到平面ACD的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,且,
為正三角形,的中點(diǎn),為棱的中點(diǎn)
(1)求證:平面
(2)求二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直二面角D—AB—E中,四邊形ABCD是邊長(zhǎng)為2的正方形,AE=EB,F(xiàn)
為CE上的點(diǎn),且BF⊥平面ACE.
(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的余弦值;
(Ⅲ)求點(diǎn)D到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,

(I)證明:是側(cè)棱的中點(diǎn);
(Ⅱ)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)如圖,已知平面平面=,,且,二面角
(Ⅰ)求點(diǎn)到平面的距離;
(Ⅱ)設(shè)二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知菱形中,,沿對(duì)角線折起,使二面角,則點(diǎn)所在平面的距離等于           。

查看答案和解析>>

同步練習(xí)冊(cè)答案