若函數(shù)f(x)=tanx+
3
在點(diǎn)P(
π
3
,  
3
+
3
)
處的切線(xiàn)為l,直線(xiàn)l分別交x軸、y軸于點(diǎn)A、B,O為坐標(biāo)原點(diǎn),則△AOB的面積為_(kāi)_____.
f(x)=tanx+
3

f′(x)=
1
cos2x
f′(
π
3
)=
1
cos2
π
3
=4
即切線(xiàn)的斜率為4,切線(xiàn)方程為y-(
3
+
3
)=4(x-
π
3
)即y=4x+
3

令x=0,解得y=
3
,令y=0,解得x=-
3
4

∴△AOB的面積為
1
2
×
3
4
×
3
=
3
8

故答案為:
3
8
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C的頂點(diǎn)在原點(diǎn),焦點(diǎn)坐標(biāo)為F(2,0),點(diǎn)P的坐標(biāo)為(m,0)(m≠0),設(shè)過(guò)點(diǎn)P的直線(xiàn)l交拋物線(xiàn)C于A,B兩點(diǎn),點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為點(diǎn)Q.
(1)當(dāng)直線(xiàn)l的斜率為1時(shí),求△QAB的面積關(guān)于m的函數(shù)表達(dá)式.
(2)試問(wèn)在x軸上是否存在一定點(diǎn)T,使得TA,TB與x軸所成的銳角相等?若存在,求出定點(diǎn)T 的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年普通高等學(xué)校招生全國(guó)統(tǒng)一考試 文科數(shù)學(xué)(四川卷) 題型:044

已知函數(shù)f(x)=x8-4,設(shè)曲線(xiàn)yf(x)在點(diǎn)(xnf(xn))處的切線(xiàn)與x軸的交點(diǎn)為(Fn+1,u)(uN+),其中為正實(shí)數(shù).

(Ⅰ)用Fx表示xa+1;

(Ⅱ)若a1=4,記anlg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xa}的通項(xiàng)公式;

(Ⅲ)若x1=4,bnxa=2,Tn是數(shù)列{ba}的前n項(xiàng)和,證明Ta<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省溫州市八校聯(lián)考高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知拋物線(xiàn)C的頂點(diǎn)在原點(diǎn),焦點(diǎn)坐標(biāo)為F(2,0),點(diǎn)P的坐標(biāo)為(m,0)(m≠0),設(shè)過(guò)點(diǎn)P的直線(xiàn)l交拋物線(xiàn)C于A,B兩點(diǎn),點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為點(diǎn)Q.
(1)當(dāng)直線(xiàn)l的斜率為1時(shí),求△QAB的面積關(guān)于m的函數(shù)表達(dá)式.
(2)試問(wèn)在x軸上是否存在一定點(diǎn)T,使得TA,TB與x軸所成的銳角相等?若存在,求出定點(diǎn)T 的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案