設平面α∥平面β,直線aα,點b∈β,則在β內過點b的所有直線中

[  ]

A.不一定存在與a平行的直線

B.只有兩條與a平行的直線

C.存在無數(shù)條與a平行的直線

D.存在唯一一條與a平行的直線

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖1,橢圓
x2
9
+
y2
4
=1
的下頂點為C,A,B分別在橢圓的第一象限和第二象限的弧上運動,滿足
OA
OB
,其中O為坐標原點,現(xiàn)沿x軸將坐標平面折成直二面角.如圖2所示,在空間中,解答下列問題:
(1)證明:OC⊥AB;
(2)設二面角O-BC-A的平面角為α,二面角O-AC-B的平面角為β,二面角O-AB-C的平面角為θ,求證:cos2α+cos2β+cos2θ=1;
(3)求三棱錐O-ABC的體積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•淄博三模)如圖所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,AA1=
3
,D為棱CC1的中點.
(I)證明:A1C⊥平面AB1C1;
(Ⅱ)設平面AB1C1與平面ABD所成的角為θ,求cosθ;
(Ⅲ)在棱AB上是否存在一點E,使DE∥平面AB1C1?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•鹽城一模)如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=2,BC=BB1=1,D是棱A1C1的中點.
(1)設平面BB1D與棱AC交于點E,確定點E的位置并給出理由;
(2)求直線AB與平面BB1D所成角的大小;
(3)求二面角B-AD-B1的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點,滿足AE:EB=CF:FA=CP:PB=1:2(如圖1).將△AEF、△CFP分別沿EF、PF折起到△A1EF和△C1FP的位置,使二面角A1-EF-B和C1-PF-B均成直二面角,連結A1B、A1P、EC1(如圖2)
(1)求證:A1E⊥平面BEP;
(2)設正△ABC的邊長為3,以
EB
,
EF
EA
為正交基底,建立空間直角坐標系.
①求點C1的坐標;
②直線EC1與平面C1PF所成角的大小;
③求二面角B-A1P-F的余弦值.
精英家教網

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直三棱柱ABC-A1B1C1中,AA1=1,AB=4,BC=3,∠ABC=90°,設平面A1BC1與平面ABC的交線為l,則l與A1C1的距離為(    )

A.1                        B.              C.17                    D.

查看答案和解析>>

同步練習冊答案