已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),它的準(zhǔn)線經(jīng)過(guò)雙曲線
:
的左焦點(diǎn)
且垂直于
的兩個(gè)焦點(diǎn)所在的軸,若拋物線
與雙曲線
的一個(gè)交點(diǎn)是
.
(1)求拋物線的方程及其焦點(diǎn)
的坐標(biāo);
(2)求雙曲線的方程及其離心率
.
(1) ;(2)
.
解析試題分析:(1)由題意可設(shè)拋物線的方程為
.
把代入方程
,得
因此,拋物線的方程為
.
于是焦點(diǎn)
(2)拋物線的準(zhǔn)線方程為
,
所以,
而雙曲線的另一個(gè)焦點(diǎn)為
,于是
因此,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/08/1/8ve7v1.png" style="vertical-align:middle;" />,所以.
于是,雙曲線的方程 為
因此,雙曲線的離心率
.
考點(diǎn):本題主要考查拋物線的標(biāo)準(zhǔn)方程、幾何性質(zhì),雙曲線的定義、標(biāo)準(zhǔn)方程及幾何性質(zhì)。
點(diǎn)評(píng):基礎(chǔ)題,圍繞的定義、標(biāo)準(zhǔn)方程及幾何性質(zhì)而命制的題目較為常見,a,b,c,e的關(guān)系要清楚。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)
,焦點(diǎn)
在
軸上,準(zhǔn)線
與圓
相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)若點(diǎn)在拋物線
上,且
,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
如圖,已知橢圓的焦點(diǎn)為
、
,離心率為
,過(guò)點(diǎn)
的直線
交橢圓
于
、
兩點(diǎn).
(1)求橢圓的方程;
(2)①求直線的斜率
的取值范圍;
②在直線的斜率
不斷變化過(guò)程中,探究
和
是否總相等?若相等,請(qǐng)給出證明,若不相等,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知點(diǎn)是橢圓
的右頂點(diǎn),若點(diǎn)
在橢圓上,且滿足
.(其中
為坐標(biāo)原點(diǎn))
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn)
,當(dāng)
時(shí),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的頂點(diǎn)與雙曲線的焦點(diǎn)重合,它們的離心率之和為
,若橢圓的焦點(diǎn)在
軸上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分10分) 已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,且過(guò)
,設(shè)點(diǎn)
.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段
中點(diǎn)
的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
.已知雙曲線的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,一條漸近線方程為,右焦點(diǎn)
,雙曲線的實(shí)軸為
,
為雙曲線上一點(diǎn)(不同于
),直線
,
分別與直線
交于
兩點(diǎn)
(1)求雙曲線的方程;
(2)是否為定值,若為定值,求出該值;若不為定值,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知橢圓經(jīng)過(guò)點(diǎn)
,且其右焦點(diǎn)與拋物線
的焦點(diǎn)F重合.
(Ⅰ)求橢圓的方程;
(II)直線經(jīng)過(guò)點(diǎn)
與橢圓
相交于A、B兩點(diǎn),與拋物線
相交于C、D兩點(diǎn).求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)分別是橢圓的
左,右焦點(diǎn)。
(1)若是第一象限內(nèi)該橢圓上的一點(diǎn),且
·
=
求點(diǎn)
的坐標(biāo)。
(2)設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)
,且
為銳角(其中O為坐標(biāo)原點(diǎn)),求直線
的斜率
的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com