【題目】某工廠(chǎng)制作仿古的桌子和椅子,需要木工和漆工兩道工序.已知生產(chǎn)一把椅子需要木工4個(gè)工作時(shí),漆工2個(gè)工作時(shí);生產(chǎn)一張桌子需要木工8個(gè)工作時(shí),漆工1個(gè)工作時(shí).生產(chǎn)一把椅子的利潤(rùn)為1500元,生產(chǎn)一張桌子的利潤(rùn)為2000元.該廠(chǎng)每個(gè)月木工最多完成8000個(gè)工作時(shí)、漆工最多完成1300個(gè)工作時(shí).根據(jù)以上條件,該廠(chǎng)安排生產(chǎn)每個(gè)月所能獲得的最大利潤(rùn)是__________元.
【答案】2100000
【解析】
設(shè)每天生產(chǎn)桌子張,椅子張,利潤(rùn)總額為,目標(biāo)函數(shù)為,則作出可行域,把直線(xiàn)向右上方平移至的位置時(shí),直線(xiàn)經(jīng)過(guò)可行域上的點(diǎn),此時(shí)取最大值,解方程得坐標(biāo)為, ,所以每天應(yīng)生產(chǎn)桌子張,椅子張才能獲得最大利潤(rùn),最大利潤(rùn)為,故答案為.
【方法點(diǎn)晴】本題主要考查利用線(xiàn)性規(guī)劃解決現(xiàn)實(shí)生活中的最佳方案及最大利潤(rùn)問(wèn)題,屬于難題題. 求目標(biāo)函數(shù)最值的一般步驟是“一畫(huà)、二移、三求”:(1)作出可行域(一定要注意是實(shí)線(xiàn)還是虛線(xiàn));(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校舉行了一次安全教育知識(shí)競(jìng)賽,競(jìng)賽的原始成績(jī)采用百分制,已知高三學(xué)生的原始成績(jī)均分布在內(nèi),發(fā)布成績(jī)使用等級(jí)制,各等級(jí)劃分標(biāo)準(zhǔn)見(jiàn)表.
原始成績(jī) | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等級(jí) | 優(yōu)秀 | 良好 | 及格 | 不及格 |
為了解該校高三年級(jí)學(xué)生安全教育學(xué)習(xí)情況,從中抽取了名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),按照的分組作出頻率分布直方圖如圖所示,其中等級(jí)為不及格的有5人,優(yōu)秀的有3人.
(1)求和頻率分布直方圖中的的值;
(2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若該校高三學(xué)生共1000人,求競(jìng)賽等級(jí)在良好及良好以上的人數(shù);
(3)在選取的樣本中,從原始成績(jī)?cè)?/span>80分以上的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)介紹,求抽取的2名學(xué)生中優(yōu)秀等級(jí)的學(xué)生恰好有1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是雙曲線(xiàn) (a>0,b>0,xy≠0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線(xiàn)的焦點(diǎn),M是∠F1PF2的平分線(xiàn)上一點(diǎn),且.某同學(xué)用以下方法研究|OM|:延長(zhǎng)F2M交PF1于點(diǎn)N,可知△PNF2為等腰三角形,且M為F2N的中點(diǎn),得|OM|=|NF1|=…=a。類(lèi)似地:P是橢圓 (a>b>0,xy≠0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的焦點(diǎn),M是∠F1PF2的平分線(xiàn)上一點(diǎn),且,則|OM|的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形的邊長(zhǎng)為2, . 是邊上一點(diǎn),線(xiàn)段交于點(diǎn).
(1)若的面積為,求的長(zhǎng);
(2)若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有900名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿(mǎn)分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問(wèn)題:
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 10 | |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | ||
合計(jì) | 50 |
(Ⅰ)填充頻率分布表的空格(將答案直接填在表格內(nèi));
(Ⅱ)補(bǔ)全頻數(shù)條形圖;
(Ⅲ)若成績(jī)?cè)?/span>75.5~85.5分的學(xué)生為二等獎(jiǎng),問(wèn)獲得二等獎(jiǎng)的學(xué)生約為多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐,底面為正方形,且底面,過(guò)的平面與側(cè)面的交線(xiàn)為,且滿(mǎn)足(表示的面積).
(1)證明: 平面;
(2)當(dāng)時(shí),二面角的余弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在底面為矩形的四棱錐中, .
(1)證明:平面平面;
(2)若異面直線(xiàn)與所成角為, , ,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市小型機(jī)動(dòng)車(chē)駕照“科二”考試中共有5項(xiàng)考察項(xiàng)目,分別記作①,②,③,④,⑤.
(1)某教練將所帶10名學(xué)員“科二”模擬考試成績(jī)進(jìn)行統(tǒng)計(jì)(如圖1所示),并打算從恰有2項(xiàng)成績(jī)不合格的學(xué)員中任意抽出2人進(jìn)行補(bǔ)測(cè)(只測(cè)不合格的項(xiàng)目),求補(bǔ)測(cè)項(xiàng)目種類(lèi)不超過(guò)3項(xiàng)的概率;
(2)如圖2,某次模擬演練中,教練要求學(xué)員甲倒車(chē)并轉(zhuǎn)向90°,在汽車(chē)邊緣不壓射線(xiàn)AC與射線(xiàn)BD的前提下,將汽車(chē)駛?cè)胫付ǖ耐\?chē)位. 根據(jù)經(jīng)驗(yàn),學(xué)員甲轉(zhuǎn)向90°后可使車(chē)尾邊緣完全落在線(xiàn)段CD,且位于CD內(nèi)各處的機(jī)會(huì)相等.若CA="BD=0.3m," AB="2.4m." 汽車(chē)寬度為1.8m, 求學(xué)員甲能按教練要求完成任務(wù)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com