設(shè)有三個命題
甲:相交兩直線m,n都在平面α內(nèi),并且都不在平面β內(nèi);
乙:m,n之中至少有一條與β相交;
丙:α與β相交;
如果甲是真命題,那么( )
A.乙是丙的充分必要條件
B.乙是丙的必要不充分條件
C.乙是丙的充分不必要條件
D.乙是丙的既不充分又不必要條件
【答案】分析:利用m,n之中至少有一條與β相交說明兩個平面有公共點,推出丙;利用兩個平面相交推出乙,得到結(jié)果.
解答:解:因為甲是真命題,又m,n之中至少有一條與β相交,說明兩個平面有公共點,所以兩個平面相交;
如果兩個平面相交,則平面α內(nèi)的兩條相交直線m,n之中至少有一條與β相交.
所以乙是丙的充分必要條件.
故選A.
點評:本題考查直線與平面的位置關(guān)系,充要條件的判斷,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有三個命題
甲:相交兩直線m,n都在平面α內(nèi),并且都不在平面β內(nèi);
乙:m,n之中至少有一條與β相交;
丙:α與β相交;
如果甲是真命題,那么(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)有三個命題
甲:相交兩直線m,n都在平面α內(nèi),并且都不在平面β內(nèi);
乙:m,n之中至少有一條與β相交;
丙:α與β相交;
如果甲是真命題,那么(  )
A.乙是丙的充分必要條件
B.乙是丙的必要不充分條件
C.乙是丙的充分不必要條件
D.乙是丙的既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)有三個命題
甲:相交兩直線m,n都在平面α內(nèi),并且都不在平面β內(nèi);
乙:m,n之中至少有一條與β相交;
丙:α與β相交;
如果甲是真命題,那么( 。
A.乙是丙的充分必要條件
B.乙是丙的必要不充分條件
C.乙是丙的充分不必要條件
D.乙是丙的既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖北省同步題 題型:單選題

設(shè)有三個命題
甲:相交兩直線m,n都在平面α內(nèi),并且都不在平面β內(nèi);
乙:m,n之中至少有一條與β相交;
丙:α與β相交;
如果甲是真命題,那么
[     ]
A.乙是丙的充分必要條件
B.乙是丙的必要不充分條件
C.乙是丙的充分不必要條件
D.乙是丙的既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊答案