A. | (-∞,1] | B. | (-1,1) | C. | (-1,1] | D. | [-1,1] |
分析 當(dāng)x<-1時,x+1<0,不等式可化為-2≤4,恒成立;當(dāng)x=-1時,x+1=0,不等式可化為-1≤4,恒成立;當(dāng)x>-1時,x+1>0,不等式可化為2x+2≤4,解得x≤1.由此能求出不等式x+(x+2)sgn(x+1)≤4的解集.
解答 解:∵函數(shù)sgn(x)=$\left\{\begin{array}{l}{-1,x<0}\\{0,x=0}\\{1,x>0}\end{array}\right.$叫做符號函數(shù),
不等式x+(x+2)sgn(x+1)≤4,
∴當(dāng)x<-1時,x+1<0,不等式可化為-2≤4,恒成立;
當(dāng)x=-1時,x+1=0,不等式可化為-1≤4,恒成立;
當(dāng)x>-1時,x+1>0,不等式可化為2x+2≤4,解得x≤1,
所以此時-1<x≤1.
綜上不等式x+(x+2)sgn(x+1)≤4的解集為{x|x≤1}=(-∞,1].
故選:A.
點評 本題考查不等式的解集的求法,是基礎(chǔ)題,解題時要認真審題,注意分類討論思想的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${∫}_{0}^{2}$(x 2-1)dx | B. | ${∫}_{0}^{2}$|(x 2-1)|dx | ||
C. | |${∫}_{0}^{2}$(x 2-1)dx| | D. | ${∫}_{0}^{1}$(x 2-1)dx+${∫}_{1}^{2}$(x 2-1)dx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\sqrt{a}$ | B. | $-\sqrt{-a}$ | C. | $\sqrt{-a}$ | D. | $\sqrt{a}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\frac{3}{2}$) | B. | ($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$) | C. | ($\frac{1}{2}$,$\frac{3}{2}$) | D. | ($\frac{1}{2}$,$\frac{3}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<1或a>3 | B. | a>3 | C. | a<1 | D. | 1<a<3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com