用二分法求函數(shù)f(x)=ln(x+1)+x-1在區(qū)間(0,1)上近似解,要求精確度為0.01時,所需二分區(qū)間次數(shù)最少為次.


  1. A.
    5
  2. B.
    6
  3. C.
    7
  4. D.
    8
C
分析:原來區(qū)間的長度等于1,每經(jīng)過一次操作,區(qū)間長度變?yōu)樵瓉淼囊话,?jīng)過n此操作后,區(qū)間長度變?yōu)?img class='latex' src='http://thumb.1010pic.com/pic5/latex/3903.png' />,利用此信息進行判斷;
解答:解:開區(qū)間(2,3)的長度等于1,每經(jīng)過一次操作,區(qū)間長度變?yōu)樵瓉淼囊话耄?jīng)過n此操作后,
區(qū)間長度變?yōu)?img class='latex' src='http://thumb.1010pic.com/pic5/latex/3903.png' />,∵用二分法求函數(shù)f(x)=ln(x+1)+x-1在區(qū)間(0,1)上近似解,要求精確度為0.01,
≤0.01,
解得n≥7,
故選C;
點評:本題考查用二分法求函數(shù)的近似零點的過程,每經(jīng)過一次操作,區(qū)間長度變?yōu)樵瓉淼囊话,此題是一道基礎題;
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

5、用二分法求函數(shù)f(x)=3x-x-4的一個零點,其參考數(shù)據(jù)如下:
f(1.6000)≈0.200  f(1.5875)≈0.133  f(1.5750)≈0.067 f(1.5625)≈0.003 f(1.5562)≈-0.029  f(1.5500)≈-0.060 
據(jù)此,可得方程f(x)=0的一個近似解(精確到0.Ol)為
1.56

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用二分法求函數(shù)f(x)的一個正實數(shù)零點時,經(jīng)計算f(0.64)<0,f(0.68)<0,f(0.72)>0,f(0.74)>0,則函數(shù)的一個精確度為0.1的正實數(shù)零點的近似值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用二分法求函數(shù)f(x)在區(qū)間(2,4)上的近似解,驗證f(2)•f(4)<0,給定精確度?=0.01,取區(qū)間(2,4)的中點x1=
2+42
=3,計算得f(2).f(x1)<0,f(x1)•f(4)>0則此時零點x0
(2,3).
(2,3).
.(填區(qū)間)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用二分法求函數(shù)f(x)=ln(x+1)+x-1在區(qū)間(0,1)上近似解,要求精確度為0.01時,所需二分區(qū)間次數(shù)最少為( 。┐危

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用二分法求函數(shù)f(x)=2log5x-1的一個零點時,若取區(qū)間[2,3]作為計算的初始區(qū)間,則下一個區(qū)間應取為
(2,2.5)
(2,2.5)

查看答案和解析>>

同步練習冊答案