如圖,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E為AB的中點,將△ADE與△BCE分別沿ED,EC向上折起,A,B兩點重合于點P,則三棱錐P-CDE的外接球的體積為

[  ]
A.

π

B.

π

C.

π

D.

π

答案:C
解析:

  解:由題意可知,折疊后的三棱錐P-CDE為正四面體,且棱長為1.

  以此正四面體來構(gòu)造正方體,則此正方體的棱長為.又正方體的體對角線長為,且正方體的外接球也為此正四面體的外接球,故外接球的半徑為

  所以VπR3π×π.

  故選C.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AB∥DC,AB=4,CD=2,等腰梯形的高為3,O為AB中點,PO⊥平面ABCD,垂足為O,PO=2,EA∥PO.
(1)求證:BD⊥平面EAC;
(2)求二面角E-AC-P的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形CDEF中,CB、DA是梯形的高,AE=BF=2,AB=2
2
,現(xiàn)將梯形沿CB、DA折起,使EF∥AB,且EF=2AB,得一簡單組合體ABCDEF如圖所示,已知M、N、P分別為AF,BD,EF的中點.
(1)求證:MN∥平面BCF;
(2)求證:AP⊥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1;幾何證明選講.
如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點D作AC的平行線DE,交BA的延長線于點E.
求證:DE•DC=AE•BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河北模擬)如圖,在等腰梯形ABCD中,CD=2,AB=4,AD=BC=
2
,E、F分別為CD、AB中點,沿EF將梯形AFED折起,使得∠AFB=60°,點G為FB的中點.
(1)求證:AG⊥平面BCEF
(2)求DG的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,上底CD=3,下底AB=4,E、F分別為AB、CD中點,分別沿DE、CE把△ADE與△BCE折起,使A、B重合于點P.

(1)求證:PE⊥CD;
(2)若點P在面CDE的射影恰好是點F,求EF的長.

查看答案和解析>>

同步練習冊答案