18.某空間幾何體的三視圖如圖所示,則該幾何體的表面積是$32+8\sqrt{5}$.

分析 由已知中的三視圖可得:該幾何體是一個(gè)以主視圖為底面的三棱柱,代入棱柱表面積公式,可得答案.

解答 解:由已知中的三視圖可得:該幾何體是一個(gè)以主視圖為底面的三棱柱,
底面面積為:$\frac{1}{2}$×2×4=4,
底面周長(zhǎng)為:2+4+$\sqrt{{2}^{2}+{4}^{2}}$=6+2$\sqrt{5}$,
故棱柱的表面積S=2×4+4×(6+2$\sqrt{5}$)=$32+8\sqrt{5}$,
故答案為:$32+8\sqrt{5}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱柱的體積和表面積,棱錐的體積和表面積,簡(jiǎn)單幾何體的三視圖,難度基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右頂點(diǎn)分別是A1,A2,M是雙曲線上任意一點(diǎn),若直線MA1,MA2的斜率之積等于2,則該雙曲線的離心率是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知A(2,3),B(4,-3),且$\overrightarrow{AP}$=3$\overrightarrow{AB}$,則點(diǎn)P的坐標(biāo)為(8,-15).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=sinx+cos(x+$\frac{π}{6}$),x∈R.
(1)求f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)若x是第二象限角,且f(x-$\frac{π}{12}$)=-$\frac{\sqrt{10}}{5}$cos2x,求cosx-sinx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦點(diǎn)的漸近線的距離為2,且雙曲線的一條漸近線與直線x-2y+3=0平行,則雙曲線的方程為( 。
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{x^2}{9}-\frac{y^2}{4}=1$C.$\frac{x^2}{4}-\frac{y^2}{9}=1$D.$\frac{x^2}{8}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某區(qū)選派7名隊(duì)員代表本區(qū)參加全市青少年圍棋錦標(biāo)賽,其中3名來(lái)自A學(xué)校且1名為女棋手,另外4名來(lái)自B學(xué)校且2名為女棋手.從這7名隊(duì)員中隨機(jī)選派4名隊(duì)員參加第一階段的比賽.
(1)求在參加第一階段比賽的隊(duì)員中,恰有1名女棋手的概率;
(2)設(shè)X為選出的4名隊(duì)員中A、B兩校人數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知某幾何體的三視圖如圖,則該幾何體的體積是( 。
A.48B.36C.24D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知命題p:?x∈R,$sinx>\frac{{\sqrt{3}}}{2}$,則(  )
A.﹁p:?x∈R,sin $x≤\frac{{\sqrt{3}}}{2}$B.﹁p:?x∈R,$sinx<\frac{{\sqrt{3}}}{2}$
C.﹁p:?x∈RD.﹁p:?x∈R,$sinx≤\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在圓x2+y2=3上任取一動(dòng)點(diǎn)P,過(guò)P作x軸的垂線PD,D為垂足,$\overrightarrow{PD}$=$\sqrt{3}$$\overrightarrow{MD}$動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求C的方程及其離心率;
(2)若直線l交曲線C交于A,B兩點(diǎn),且坐標(biāo)原點(diǎn)到直線l的距離為$\frac{\sqrt{3}}{2}$,求△AOB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案