精英家教網 > 高中數學 > 題目詳情
如圖,正三棱柱ABC一A1B1C1的棱長均為2a,E為CC1的中點.
(Ⅰ)求證:AB1⊥BE;
(Ⅱ)求三棱錐B一AB1E的體積.

【答案】分析:(I)取BC中點M,連AM,B1M,則AM⊥BC,由BB1⊥平面ABC,知BB1⊥AM,BC∩BB1=B,由此能夠證明AB1⊥BE.
(II)==,由此能求出三棱錐B一AB1E的體積.
解答:證明:(I)取BC中點M,連AM,B1M,則AM⊥BC,
∵BB1⊥平面ABC,
∴BB1⊥AM,BC∩BB1=B
∴AM⊥平面BB1C1C
由條件△BCE≌△B1BM,
∴∠BB1M=∠CBE,而∠CBE+∠EBB1=90°
∴∠BB1M+∠EBB1=90°,則B1M⊥BE
∵B1M為B1A在平面BB1C1C上的射影,
∴AB1⊥BE.
(II)==
=
=
點評:本題考查直線關系的證明和棱錐體積的證明,解題時要認真審題,仔細解答,注意合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,正三棱柱ABC-A1B1C1各棱長都等于a,E是BB1的中點.
(1)求直線C1B與平面A1ABB1所成角的正弦值;
(2)求證:平面AEC1⊥平面ACC1A1;
(3)求點C1到平面AEC的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,正三棱柱ABC-A1B1C1的各棱長都2,E,F分別是AB,A1C1的中點,則EF的長是( 。
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鄭州二模)如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(Ⅰ)求證:AB1⊥面A1BD;
(Ⅱ)設點O為AB1上的動點,當OD∥平面ABC時,求
AOOB1
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,正三棱柱ABC-A1B1C1中(注:底面為正三角形且側棱與底面垂直),BC=CC1=2,P,Q分別為BB1,CC1的中點.
(Ⅰ)求多面體ABC-A1PC1的體積;
(Ⅱ)求A1Q與BC1所成角的大。

查看答案和解析>>

同步練習冊答案