已知函數(shù),構(gòu)造函數(shù),定義如下:當時,,當時,那么           (    )

A.有最小值0,無最大值

B.有最小值-1,無最大值

C.有最大值1,無最小值

D.無最小值,也無最大值

 

【答案】

B

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1a-x
-1
(其中a為常數(shù),x≠a).利用函數(shù)y=f(x)構(gòu)造一個數(shù)列{xn},方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述構(gòu)造過程中,如果xi(i=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過程繼續(xù)下去;如果xi不在定義域中,那么構(gòu)造數(shù)列的過程就停止.
(Ⅰ)當a=1且x1=-1時,求數(shù)列{xn}的通項公式;
(Ⅱ)如果可以用上述方法構(gòu)造出一個常數(shù)列,求a的取值范圍;
(Ⅲ)是否存在實數(shù)a,使得取定義域中的任一實數(shù)值作為x1,都可用上述方法構(gòu)造出一個無窮數(shù)列{xn}?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆遼寧省高二下學期期中考試文科數(shù)學試卷(解析版) 題型:選擇題

已知函數(shù),,構(gòu)造函數(shù),定義如下:

    當時,;當時,,那么(    )

      A.有最大值3,最小值1           B. 有最大值7,無最小值

  C.有最大值3,無最小值                D.無最大值,也無最小值

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試文科數(shù)學(湖南卷解析版) 題型:解答題

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調(diào)遞減;當單調(diào)遞增,故當時,取最小值

于是對一切恒成立,當且僅當.        ①

時,單調(diào)遞增;當時,單調(diào)遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調(diào)遞減;當時,單調(diào)遞增.故當,

從而

所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年遼寧省高二下學期第一次月考數(shù)學(文) 題型:選擇題

已知函數(shù),,構(gòu)造函數(shù),定義如下:當時,;當時,,那么              

     A.有最大值3,最小值-1         B. 有最大值7,無最小值

C.有最大值3,無最小值           D.無最大值,也無最小值

 

查看答案和解析>>

同步練習冊答案