9.曲線$y=-\sqrt{1-{x^2}}$與曲線y+|ax|=0(a∈R)的交點(diǎn)有2個(gè).

分析 曲線$y=-\sqrt{1-{x^2}}$表示以原點(diǎn)為圓心,1為半徑的下半圓,y+|ax|=0表示過(guò)原點(diǎn)的直線,即可得出兩函數(shù)交點(diǎn)個(gè)數(shù).

解答 解:曲線$y=-\sqrt{1-{x^2}}$表示以原點(diǎn)為圓心,1為半徑的下半圓,y+|ax|=0表示過(guò)原點(diǎn)的直線,
∴兩曲線交點(diǎn)個(gè)數(shù)為2個(gè).
故答案為:2.

點(diǎn)評(píng) 此題考查了直線與圓相交的性質(zhì),利用了數(shù)形結(jié)合的思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.對(duì)于使不等式f(x)≤M成立的所有常數(shù)M中,我們把M的最小值叫做函數(shù)f(x)的上確界.若a,b∈R+,a+b=1,則$-\frac{1}{2a}-\frac{2}$的上確界為(  )
A.$-\frac{9}{2}$B.$\frac{9}{2}$C.$\frac{1}{4}$D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知命題p:x2-4x-5≤0,命題q:x2-2x+1-m2≤0(m>0).
(1)若p是q的充分條件,求實(shí)數(shù)m的取值范圍;
(2)若m=5,p∨q為真命題,p∧q為假命題,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知點(diǎn)A(-2,-1),B(2,1),直線AM,BM相交于點(diǎn)M,且它們的斜率之積為-$\frac{1}{2}$,點(diǎn)M的軌跡為曲線H.
(1)求曲線H的方程;
(2)過(guò)點(diǎn)P(-2,1)作斜率為k1,k2的兩條直線l1,l2分別與曲線H交于C,D兩點(diǎn),且C,D關(guān)于原點(diǎn)對(duì)稱(chēng),設(shè)點(diǎn)Q(-2,0)到直線l1,l2的距離分別為d1,d2且d1>d2,求k1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積是$\frac{16}{3}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.己知向量$\overrightarrow{a}$=(2,sinθ),$\overrightarrow$=(1,cosθ),θ∈(0,$\frac{π}{2}$)
(1)若$\overrightarrow{a}$$•\overrightarrow$=$\frac{7}{3}$,求sinθ+cosθ的值;
(2)若$\overrightarrow{a}$∥$\overrightarrow$,求sin(2θ+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知點(diǎn)A、B分別是左焦點(diǎn)為(-4,0)的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點(diǎn),且橢圓C過(guò)點(diǎn)P($\frac{3}{2}$,$\frac{5\sqrt{3}}{2}$).
(1)求橢圓C的方程;
(2)已知F是橢圓C的右焦點(diǎn),以AF為直徑的圓記為圓M,過(guò)P點(diǎn)能否引圓M的切線?若能,求出這條切線與x軸及圓M的弦PF所對(duì)的劣弧圍成的圖形面積;若不能,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F1且與x軸垂直的直線交橢圓于A,B兩點(diǎn),直線AF2與橢圓的另一個(gè)交點(diǎn)為C,若$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}C}$,則橢圓的離心率為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知α是第二象限角,且cos(α+π)=$\frac{3}{13}$.
(1)求tanα的值;
(2)求sin(α-$\frac{π}{2}$)•sin(-α-π)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案