年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分12分) 已知函數(shù).
(Ⅰ) 求f 1(x);
(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an;
(Ⅲ) 設(shè)bn=(32n-8),求數(shù)列{bn}的前項(xiàng)和Tn
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分12分) 已知函數(shù).
(Ⅰ) 求f 1(x);
(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an;
(Ⅲ) 設(shè)bn=an+12+an+22+¼+a2n+12,是否存在最小的正整數(shù)k,使對(duì)于任意nÎN+有bn<成立. 若存在,求出k的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù).(Ⅰ) 求f –1(x);(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(n??N+),求{an}的通項(xiàng)公式an;(Ⅲ) 設(shè)bn=an+12+an+22+??+a2n+12,是否存在最小的正整數(shù)k,使對(duì)于任意n??N+有bn<成立. 若存在,求出k的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
. (本題滿分12分)已知函數(shù).(Ⅰ) 求f –1(x);(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(n??N+),求{an}的通項(xiàng)公式an;(Ⅲ) 設(shè)bn=an+12+an+22+??+a2n+12,是否存在最小的正整數(shù)k,使對(duì)于任意n??N+有bn<成立. 若存在,求出k的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com