在如圖所示的幾何體中,四邊形是等腰梯形,,平面.

(Ⅰ)求證:平面

(Ⅱ)求二面角的余弦值.

 

【答案】

:(Ⅰ)見解析;(Ⅱ)

【解析】:(Ⅰ)如圖,因為是等腰三角形,且所以

所以平面.

(Ⅱ)如圖,連結(jié),則,建立空間直角坐標系,設(shè),

 

設(shè)平面的法向量為,則

,所以,令

而平面的一個法向量為

可得

二面角的余弦值為

【考點定位】本題結(jié)合熟知的等腰梯形這一底面考查了空間線面垂直的判定方法,通過建立空間直角坐標系考查了向量法求二面角的方法,等腰梯形這一底面是建立空間坐標系的基礎(chǔ),解題時要善于發(fā)現(xiàn)垂直關(guān)系

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD、ADEF、ABGF均為全等的直角梯形,且BC∥AD,AB=AD=2BC.
(Ⅰ)求證:CE∥平面ABGF;
(Ⅱ)求二面角G-CE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的幾何體中,平行四邊形ABCD的頂點都在以AC為直徑的圓O上,AD=CD=DP=a,AP=CP=
2
a,DP∥AM,且AM=
1
2
DP,E,F(xiàn)分別為BP,CP的中點.
(I)證明:EF∥平面ADP;
(II)求三棱錐M-ABP的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•朝陽區(qū)一模)在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中點.
(Ⅰ)求證:EM∥平面ADF;
(Ⅱ)在EB上是否存在一點P,使得∠CPD最大?若存在,請求出∠CPD的正切值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(Ⅰ)求證:AC⊥平面FBC;
(Ⅱ)線段ED上是否存在點Q,使平面EAC⊥平面QBC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在如圖所示的幾何體中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE=2,M是AB的中點. 
(1)求證:CM⊥平面ABDE;
(2)求幾何體的體積.

查看答案和解析>>

同步練習冊答案