2.已知函數(shù)f(x)=ex-kx,x∈R
(1)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間;
(2)討論f(x)的極值.

分析 (1)求出f′(x)=ex-e.利用導(dǎo)函數(shù)的符號(hào),求解函數(shù)的單調(diào)區(qū)間即可.
(2)f′(x)=ex-k,通過①k≤0時(shí),②當(dāng)k>0時(shí),利用導(dǎo)函數(shù)的符號(hào),判斷函數(shù)的單調(diào)性以及極值即可.

解答 解:(1)由k=e 得f(x)=ex-ex,所以f′(x)=ex-e.
由f′(x)>0 得x>1,故f(x)的單調(diào)遞增區(qū)間是(1,+∞),
由f′(x)<0 得x<1,故f(x)的單調(diào)遞減區(qū)間是(-∞,1).…4分
(2)f′(x)=ex-k,
①k≤0時(shí),f′(x)>0 對(duì)x∈R恒成立,
所以此時(shí)f(x)在(-∞,+∞) 上單調(diào)遞增,無極值; …..…6分
②當(dāng)k>0時(shí),f′(x)=ex-k=0 得x=lnk.
當(dāng)x 變化時(shí)f′(x),f(x)的變化情況如下表:

x(-∞,lnk)Lnk(lnk,+∞)
f’(x)-0+
f(x)單調(diào)遞減極小值單調(diào)遞增
因此當(dāng)x=lnk時(shí),f(x)取得極小值為k-klnk…12分

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的極值以及函數(shù)的單調(diào)性的應(yīng)用,考查分類討論思想以及轉(zhuǎn)化思想的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)是定義在R上的可導(dǎo)函數(shù),當(dāng)x∈(1,+∞)時(shí),(x-1)f′(x)-f(x)>0恒成立,若a=f(2),b=$\frac{1}{2}$f(3),c=$\frac{1}{{\sqrt{2}-1}}f(\sqrt{2})$,則a,b,c的大小關(guān)系是( 。
A.c<a<bB.a<b<cC.b<a<cD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=(x-3)ex的單調(diào)增區(qū)間是( 。
A.(-∞,2)B.(2,+∞)C.(1,4)D.(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=$\frac{3}{2}$x2-lnx的極值點(diǎn)為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),在R上滿足f′(x)>f(x),且y=f(x-3)為奇函數(shù),f(-6)=-3,則不等式f(x)<3ex的解集為( 。
A.(0,+∞)B.(-3,+∞)C.(-∞,0)D.(-∞,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在極坐標(biāo)系中,圓心為(2,$\frac{π}{4}$),半徑為1的圓的極坐標(biāo)方程是(  )
A.ρ=8sin(θ-$\frac{π}{4}$)B.ρ=8cos(θ-$\frac{π}{4}$)
C.ρ2-4ρcos(θ-$\frac{π}{4}$)+3=0D.ρ2-4ρsin(θ-$\frac{π}{4}$)+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.一青蛙從點(diǎn)A0(x0,y0)開始依次水平向右和豎直向上跳動(dòng),其落點(diǎn)坐標(biāo)依次是Ai(xi,yi)(i∈N*),(如圖,A0(x0,y0)的坐標(biāo)以已知條件為準(zhǔn)),Sn表示青蛙從點(diǎn)A0到點(diǎn)An所經(jīng)過的路程.
(1)點(diǎn)A0(x0,y0)為拋物線y2=2px(p>0)準(zhǔn)線上一點(diǎn),點(diǎn)A1,A2均在該拋物線上,并且直線A1A2經(jīng)過該拋物線的焦點(diǎn),證明S2=3p;
(2)若點(diǎn)An(xn,yn)(n∈N*)要么落在y=x所表示的曲線上,要么落在y=x2所表示的曲線上,并且A0($\frac{1}{2}$,$\frac{1}{2}$),試寫出$\lim_{n→+∞}$Sn(不需證明);
(3)若點(diǎn)An(xn,yn)要么落在y=${2^{\sqrt{1+8x}-1}}$所表示的曲線上,要么落在y=${2^{\sqrt{1+8x}+1}}$所表示的曲線上,并且A0(0,4),求S2011的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=$\sqrt{3}$x+2cosx,x∈(0,π)上單調(diào)減區(qū)間為(  )
A.($\frac{π}{3}$,$\frac{2π}{3}$)B.($\frac{π}{6}$,$\frac{5π}{6}$)C.(0,$\frac{π}{3}$),($\frac{2π}{3}$,π)D.(0,$\frac{π}{6}$),($\frac{5π}{6}$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=3(x-2)2+5,且|x1-2|>|x2-2|,則f(x1),f(x2)的大小關(guān)系是f(x1)>f(x2).

查看答案和解析>>

同步練習(xí)冊(cè)答案