(2)已知af(x)+bf()=cx(a、b、c∈R,ab≠0,a2≠b2),求f(x);
(3)f(x)是R上的奇函數(shù),且x∈(-∞,0)時(shí),f(x)=x2+2x,求f(x);
(4)某工廠生產(chǎn)一種機(jī)器的固定成本為5 000元,且每生產(chǎn)100部,需要增加投入2 500元,對(duì)銷售市場進(jìn)行調(diào)查后得知,市場對(duì)此產(chǎn)品的需求量為每年500部,已知銷售收入的函數(shù)為H(x)=500x-x2,其中x是產(chǎn)品售出的數(shù)量,且0≤x≤500.若x為年產(chǎn)量,y表示利潤,求y=f(x)的解析式.
思路分析:已知函數(shù)的模型(如一次函數(shù)、反比例函數(shù)、二次函數(shù)等)一般設(shè)出函數(shù)解析式,由題設(shè)確定系數(shù),即待定系數(shù)法,如(1);求抽象函數(shù)解析式,可以以變量換變量,然后解方程組求解析式,如(2),也可根據(jù)函數(shù)奇偶性確定解析式,如(3);實(shí)際應(yīng)用問題的函數(shù)解析式則要符合實(shí)際意義.
解:(1)設(shè)g(x)=ax+b(a>0),a2x2+2abx+b2=4x2-20x+25(a>0).解得
∴g(x)=2x-5.
(2)由題設(shè)af(x)+bf()=cx,用x代換上式中的,則af()+bf(x)=,列方程組解得f(x)=(ax-).
(3)由于f(x)的定義域是R,且f(x)是奇函數(shù),可得f(0)=0.
當(dāng)x>0時(shí),-x<0,則f(-x)=(-x)2-2x=x2-2x.
∴-f(x)=x2-2x,即f(x)=-x2+2x(x>0).
∴f(x)=
(4)由題意知,當(dāng)0≤x≤500時(shí),產(chǎn)品全部售出;當(dāng)x>500時(shí),只能售出500部,故利潤函數(shù)
y=
=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1+x2 |
b(1+x2) |
3 |
3 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2)已知函數(shù)f(x)滿足f(x+y)+f(x-y)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:閱讀理解
仔細(xì)閱讀下面問題的解法:
設(shè)A=[0, 1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍。
解:由已知可得 a < 21-x
令f(x)= 21-x ,∵不等式a <21-x在A上有解,
∴a <f(x)在A上的最大值.
又f(x)在[0,1]上單調(diào)遞減,f(x)max =f(0)=2. ∴實(shí)數(shù)a的取值范圍為a<2.
研究學(xué)習(xí)以上問題的解法,請(qǐng)解決下面的問題:
(1)已知函數(shù)f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對(duì)于(1)中的A,設(shè)g(x)=,x∈A,試判斷g(x)的單調(diào)性(寫明理由,不必證明);
(3)若B ={x|>2x+a–5},且對(duì)于(1)中的A,A∩B≠F,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)函數(shù)的圖象奇偶性、周期性專項(xiàng)訓(xùn)練(河北) 題型:解答題
若函數(shù)f(x)對(duì)定義域中任意x均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(a,b)對(duì)稱.
(1)已知函數(shù)f(x)=的圖象關(guān)于點(diǎn)(0,1)對(duì)稱,求實(shí)數(shù)m的值;
(2)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關(guān)于點(diǎn)(0,1)對(duì)稱,且當(dāng)x∈(0,+∞)時(shí),g(x)=x2+ax+1,求函數(shù)g(x)在(-∞,0)上的解析式;
(3)在(1)(2)的條件下,當(dāng)t>0時(shí),若對(duì)任意實(shí)數(shù)x∈(-∞,0),恒有g(shù)(x)<f(t)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com