6.已知數(shù)列an}的前n項(xiàng)和為Sn,若對(duì)任意的n∈N*,都有Sn=2n+n2+n-1,則a6=44.

分析 利用n≥2時(shí),an=Sn-Sn-1,即可得出.

解答 解:n≥2時(shí),an=Sn-Sn-1=2n+n2+n-1-[2n-1+(n-1)2+n-2]=2n-1+2n,
∴a6=25+2×6=44.
故答案為:44.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.定義在R上的函數(shù)f(x)滿足f(x)+f(x+5)=16,當(dāng)x∈(-1,4]時(shí),f(x)=x2-2x,則函數(shù)f(x)在區(qū)間[0,2016]上的零點(diǎn)個(gè)數(shù)是605.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{1gx,x>1}\end{array}\right.$,則f(f(10))=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知α,β是關(guān)于x的一元二次方程x2+(2m+3)x+m2=0的兩個(gè)不相等的實(shí)數(shù)根,且滿足$\frac{1}{α}$+$\frac{1}{β}$=-1,則m的值是(  )
A.3或-1B.3C.1D.-3或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={-2,-1,0,1,2,3},集合B={x|y=$\sqrt{4-{x}^{2}}$},則A∩B等于( 。
A.[-2,2]B.{-1,0,1}C.{-2,-1,0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若△ABC的內(nèi)角A、B、C所對(duì)的邊a、b、c滿足(a+b)2-c2=4,且C=60°,則△ABC的面積為( 。
A.$\frac{\sqrt{3}}{3}$B.2$\sqrt{3}$-3C.$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{3}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知集合A={x|x-1≤2},B={x|2<x<2m+1,m∈R}≠∅.
(1)若m=3,求(∁RA)∩B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.若?x∈R,函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)全集U=R,集合A={x|2≤x<4,x∈R},B={x|3x-7≥8-2x,x∈R},求A∪B,(∁UA)∪(∁UB)

查看答案和解析>>

同步練習(xí)冊(cè)答案