函數(shù)y=f(x-1)的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對稱,若y=g(x)過點(diǎn)(2,0),則函數(shù)y=f(x)必過點(diǎn)( )
A.(2,0)
B.(0,2)
C.(1,2)
D.(-1,2)
【答案】分析:根據(jù)函數(shù)y=f(x-1)的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對稱,可得兩個函數(shù)互為反函數(shù),利用y=g(x)過點(diǎn)(2,0),可得(0,2)在y=f(x-1)的圖象上,由此可得結(jié)論.
解答:解:∵函數(shù)y=f(x-1)的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對稱,
∴函數(shù)y=f(x-1)與函數(shù)y=g(x)互為反函數(shù),
∵y=g(x)過點(diǎn)(2,0),
∴(2,0)在y=g(x)的圖象上,
∴(0,2)在y=f(x-1)的圖象上,
∴f(-1)=2
∴函數(shù)y=f(x)必過點(diǎn)(-1,2)
故選D.
點(diǎn)評:本題考查函數(shù)圖象的對稱性,考查反函數(shù),考查學(xué)生分析解決問題的能力,是基礎(chǔ)題.