已知各項(xiàng)全不為零的數(shù)列{ak}的前k項(xiàng)和為Sk,且Sk=數(shù)學(xué)公式N*),其中a1=1.
(Ⅰ)求數(shù)列{ak}的通項(xiàng)公式;
(Ⅱ)對(duì)任意給定的正整數(shù)n(n≥2),數(shù)列{bk}滿足數(shù)學(xué)公式(k=1,2,…,n-1),b1=1,求b1+b2+…+bn

解:(Ⅰ)當(dāng)k=1,由及a1=1,得a2=2.
當(dāng)k≥2時(shí),由,得ak(ak+1-ak-1)=2ak
因?yàn)閍k≠0,所以ak+1-ak-1=2.從而a2m-1=1+(m-1)•2=2m-1.a(chǎn)2m=2+(m-1)•2=2m,m∈N*.
故ak=k(k∈N*).

(Ⅱ)因?yàn)閍k=k,所以
所以=
故b1+b2+b3++bn==
分析:(Ⅰ)由,得ak(ak+1-ak-1)=2ak.再由ak+1-ak-1=2.知a2m-1=1+(m-1)•2=2m-1.a(chǎn)2m=2+(m-1)•2=2m,m∈N*.由此可知ak=k(k∈N*).
(Ⅱ)由題意知=.由此可求出b1+b2+b3++bn的值.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)全不為零的數(shù)列{ak}的前k項(xiàng)和為Sk,且Sk=
1
2
akak+1(k∈
N*),其中a1=1.
(Ⅰ)求數(shù)列{ak}的通項(xiàng)公式;
(Ⅱ)對(duì)任意給定的正整數(shù)n(n≥2),數(shù)列{bk}滿足
bk+1
bk
=
k-n
ab+1
(k=1,2,…,n-1),b1=1,求b1+b2+…+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(07年陜西卷理)(12分)

已知各項(xiàng)全不為零的數(shù)列{ak}的前k項(xiàng)和為Sk,且SkN*),其中a1=1.

(Ⅰ)求數(shù)列{ak}的通項(xiàng)公式;

(Ⅱ)對(duì)任意給定的正整數(shù)n(n≥2),數(shù)列{bk}滿足(k=1,2,…,n-1),b1=1.

求b1+b2+…+bn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(07年陜西卷理)(12分)

已知各項(xiàng)全不為零的數(shù)列{ak}的前k項(xiàng)和為Sk,且SkN*),其中a1=1.

(Ⅰ)求數(shù)列{ak}的通項(xiàng)公式;

(Ⅱ)對(duì)任意給定的正整數(shù)n(n≥2),數(shù)列{bk}滿足(k=1,2,…,n-1),b1=1.

求b1+b2+…+bn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(陜西) 題型:解答題

(本小題滿分12分)
已知各項(xiàng)全不為零的數(shù)列{ak}的前k項(xiàng)和為Sk,且SkN*),其中a1=1.
(Ⅰ)求數(shù)列{ak}的通項(xiàng)公式;
(Ⅱ)對(duì)任意給定的正整數(shù)n(n≥2),數(shù)列{bk}滿足k=1,2,…,n-1),b1=1.
b1+b2+…+bn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(陜西) 題型:解答題

(本小題滿分12分)

已知各項(xiàng)全不為零的數(shù)列{ak}的前k項(xiàng)和為Sk,且SkN*),其中a1=1.

(Ⅰ)求數(shù)列{ak}的通項(xiàng)公式;

(Ⅱ)對(duì)任意給定的正整數(shù)n(n≥2),數(shù)列{bk}滿足k=1,2,…,n-1),b1=1.

b1+b2+…+bn.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案