二階矩陣M對(duì)應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1
(Ⅱ)設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
【答案】分析:(1)先設(shè)出所求矩陣,利用待定系數(shù)法建立一個(gè)四元一次方程組,解方程組即可,再根據(jù)求逆矩陣的公式求出逆矩陣;
(2)在所求的直線上任設(shè)一點(diǎn)寫(xiě)成列向量,求出該點(diǎn)在矩陣M的作用下的點(diǎn)的坐標(biāo),代入已知曲線即可.
解答:解:(Ⅰ)設(shè),則有=,=,
所以,
解得
所以M=,
從而M-1=
(Ⅱ)因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131023213013015520514/SYS201310232130130155205020_DA/12.png">==且m:2x′-y′=4,
所以2(x+2y)-(3x+4y)=4,
即x+4=0,這就是直線l的方程.
點(diǎn)評(píng):本題主要考查來(lái)了逆矩陣與投影變換,以及直線的一般式方程等基礎(chǔ)知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二階矩陣M對(duì)應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).
(1)求矩陣M;
(2)設(shè)直線l在變換M作用下得到了直線m:x-y=4,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)選修4-2:矩陣與變換
二階矩陣M對(duì)應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1
(Ⅱ)設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓M上的點(diǎn)到直線的距離的最小值.
(3)選修4一5:不等式選講
已知函數(shù)f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范圍,使f(x)為常數(shù)函數(shù);
(Ⅱ)若關(guān)于x的不等式f(x)-a≤0有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二階矩陣M對(duì)應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).
(1)求矩陣M;
(2)設(shè)直線l在變換M作用下得到了直線m:x-y=4,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選做題)二階矩陣M對(duì)應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

[選做題]
A.(選修4-1:幾何證明選講)
如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點(diǎn)E,交⊙O于點(diǎn)D,若PE=PA,
∠ABC=60°,PD=1,BD=8,求BC的長(zhǎng).
B.(選修4-2:矩陣與變換)
二階矩陣M對(duì)應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1
(Ⅱ)設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,設(shè)圓ρ=3上的點(diǎn)到直線ρ(cosθ+
3
sinθ)=2
的距離為d,求d的最大值.
D.(選修4-5:不等式選講)
設(shè)a,b,c為正數(shù)且a+b+c=1,求證:(a+
1
a
)2+(b+
1
b
)2+(c+
1
c
)2
100
3

查看答案和解析>>

同步練習(xí)冊(cè)答案