直線上與點(diǎn)P(-2,3)距離為的點(diǎn)的坐標(biāo)為     

(-3,4),(-1,2)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
y2
5
+
x2
4
=1的上、下焦點(diǎn)分別為N、M,若動(dòng)點(diǎn)P滿足
MP
MN
=|
PN
|
•|
MN
|

(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)N作直線l與點(diǎn)P的軌跡C交于點(diǎn)A、B,分別以A、B為切點(diǎn)作曲線C的切線,其交點(diǎn)為Q,求
NQ
AB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•海淀區(qū)二模)如圖,平面內(nèi)的定點(diǎn)F到定直線l的距離為2,定點(diǎn)E滿足:|
EF
|=2且EF⊥l于G,點(diǎn)Q是直線l上一動(dòng)點(diǎn),點(diǎn)M滿足
FM
=
MQ
,點(diǎn)P滿足
PQ
EF
PM
FQ
=0.
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求動(dòng)點(diǎn)P的軌跡方程;
(2)若經(jīng)過(guò)點(diǎn)E的直線l1與點(diǎn)P的軌跡交于相異兩點(diǎn)A、B,令∠AFB=θ,當(dāng)
3
4
π≤θ<π時(shí),求直線l1的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘭州模擬)已知點(diǎn)M是直線x=-
1
2
上的動(dòng)點(diǎn),F(
1
2
,0)
為定點(diǎn),過(guò)點(diǎn)M且垂直于直線x=-
1
2
的直線和線段MF的垂直平分線相交于點(diǎn)P.
(1)求點(diǎn)P的軌跡方程;
(2)經(jīng)過(guò)點(diǎn)Q(a,0)(a>0)且與x軸不垂直的直線l與點(diǎn)P的軌跡有兩個(gè)不同交點(diǎn)A、B,若在x軸上存在點(diǎn)C,使得△ABC為正三角形,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:中山市東升高中2008屆高三數(shù)學(xué)基礎(chǔ)達(dá)標(biāo)訓(xùn)練14 題型:022

直線上與點(diǎn)P(-2,3)距離等于的點(diǎn)的坐標(biāo)是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案