【題目】已知橢圓C: =1(a>b>0)過點( ,1),且以橢圓短軸的兩個端點和一個焦點為頂點的三角形是等腰直角三角形.
(1)求橢圓的標準方程;
(2)設M(x,y)是橢圓C上的動點,P(p,0)是x軸上的定點,求|MP|的最小值及取最小值時點M的坐標.
【答案】
(1)解:由題意,以橢圓短軸的兩個端點和一個焦點為頂點的三角形是等腰直角三角形,
所以 b=c,a2=2b2,則橢圓C的方程為 .
又因為橢圓C:過點A( ,1),
所以 ,
故a=2,b=.
所以橢圓的標準方程為 .
(2)解: |MP|2=(x﹣p)2+y2.
因為 M(x,y)是橢圓C上的動點,
所以 ,
故 .
所以 .
因為M(x,y)是橢圓C上的動點,
所以|x|≤2.
①若|2p|≤2,即|p|≤1,
則當x=2p 時,|MP|取最小值 ,
此時M .
②若p>1,則當x=2 時,|MP|取最小值|p﹣2|,此時M(2,0).
③若p<﹣1,則當x=﹣2 時,|MP|取最小值|p+2|,此時M(﹣2,0)
【解析】(1)由已知中以橢圓短軸的兩個端點和一個焦點為頂點的三角形是等腰直角三角形.且橢圓C過點( ,1),可得:橢圓的標準方程;(2)根據(jù)M(x,y)是橢圓C上的動點,P(p,0)是x軸上的定點,求出|MP|的表達式,分類討論,可得|MP|的最小值及取最小值時點M的坐標.
【考點精析】認真審題,首先需要了解橢圓的標準方程(橢圓標準方程焦點在x軸:,焦點在y軸:).
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的首項a1=a(a>0),其前n項和為Sn , 設bn=an+an+1(n∈N*).
(1)若a2=a+1,a3=2a2 , 且數(shù)列{bn}是公差為3的等差數(shù)列,求S2n;
(2)設數(shù)列{bn}的前n項和為Tn , 滿足Tn=n2 .
①求數(shù)列{an}的通項公式;
②若對n∈N*,且n≥2,不等式(an﹣1)(an+1-1)≥2(1﹣n)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)查“五一”小長假出游選擇“有水的地方”是否與性別有關(guān),現(xiàn)從該市“五一”出游旅客中隨機抽取500人進行調(diào)查,得到如下2×2列聯(lián)表:(單位:人)
選擇“有水的地方” | 不選擇“有水的地方” | 合計 | |
男 | 90 | 110 | 200 |
女 | 210 | 90 | 300 |
合計 | 300 | 200 | 500 |
(Ⅰ)據(jù)此樣本,有多大的把握認為選擇“有水的地方”與性別有關(guān);
(Ⅱ)若以樣本中各事件的頻率作為概率估計全市“五一”所有出游旅客情況,現(xiàn)從該市的全體出游旅客(人數(shù)眾多)中隨機抽取3人,設3人中選擇“有水的地方”的人數(shù)為隨機變量X,求隨機變量X的數(shù)學期望和方差.
附臨界值表及參考公式:
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)查某廠工人生產(chǎn)某種產(chǎn)品的能力,隨機抽查了20位工人某天生產(chǎn)該產(chǎn)品的數(shù)量.產(chǎn)品數(shù)量的分組區(qū)間為[45,55),[55,65),[65,75),[75,85),[85,95)由此得到頻率分布直方圖如圖.則產(chǎn)品數(shù)量位于[55,65)范圍內(nèi)的頻率為;這20名工人中一天生產(chǎn)該產(chǎn)品數(shù)量在[55,75)的人數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】最新公布的《道路交通安全法》和《道路交通安全法實施條例》對車速、安全車距以及影響駕駛?cè)朔磻炻纫蛩鼐性敿氁?guī)定,這些規(guī)定說到底主要與剎車距離有關(guān),剎車距離是指從駕駛員發(fā)現(xiàn)障礙到制動車輛,最后完全停止所行駛的距離,即:剎車距離=反應距離+制動距離,反應距離=反應時間×速率,制動距離與速率的平方成正比,某反應時間為的駕駛員以的速率行駛,遇緊急情況,汽車的剎車距離為.
()試將剎車距離表示為速率的函數(shù).
()若該駕駛員駕駛汽車在限速為的公路上行駛,遇緊急情況,汽車的剎車距離為,試問該車是否超速?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,an=cos (n∈N*)
(1)試將an+1表示為an的函數(shù)關(guān)系式;
(2)若數(shù)列{bn}滿足bn=1﹣ (n∈N*),猜想an與bn的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com