【題目】兩千多年前,古希臘畢達哥拉斯學派的數學家曾經在沙灘上研究數學問題.他們在沙灘上畫點或用小石子表示數,按照點或小石子能排列的形狀對數進行分類.如下圖中實心點的個數5,9,14,20,…為梯形數.根據圖形的構成,記此數列的第2013項為a2013 , 則a2013﹣5=( )
A.2019×2013
B.2019×2012
C.1006×2013
D.2019×1006
科目:高中數學 來源: 題型:
【題目】某市的教育主管部門對所管轄的學校進行年終督導評估,為了解某學校師生對學校教學管理的滿意度,分別從教師和不同年級的同學中隨機抽取若干師生,進行評分(滿分100分),繪制如下頻率分布直方圖(分組區(qū)間為, , , , , ),并將分數從低到高分為四個等級:
滿意度評分 | ||||
滿意度等級 | 不滿意 | 基本滿意 | 滿意 | 非常滿意 |
已知滿意度等級為基本滿意的有340人.
(1)求表中的值及不滿意的人數;
(2)在等級為不滿意的師生中,老師占,現(xiàn)從該等級師生中按分層抽樣抽取12人了解不滿意的原因,并從中抽取3人擔任整改督導員,記為老師整改督導員的人數,求的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線頂點在原點,焦點在軸上,拋物線上一點到焦點的距離為3,線段的兩端點, 在拋物線上.
(1)求拋物線的方程;
(2)若軸上存在一點,使線段經過點時,以為直徑的圓經過原點,求的值;
(3)在拋物線上存在點,滿足,若是以角為直角的等腰直角三角形,求面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠為了對新研究的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數據:
單價x元 | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷售y件 | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程 ,其中 =﹣20.
(2)預計在今后的銷售中,銷售與單價仍然服從(1)中的關系,且該產品的成本是4元/件,為使工廠獲得最大利潤,該產品的單價定為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[x]表示不超過x的最大整數,例如:[π]=3. S1=[ ]+[ ]+[ ]=3
S2=[ ]+[ ]+[ ]+[ ]+[ ]=10
S3=[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+ ]=21,
…,
依此規(guī)律,那么S10=( )
A.210
B.230
C.220
D.240
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】由于研究性學習的需要,中學生李華持續(xù)收集了手機“微信運動”團隊中特定20名成員每天行走的步數,其中某一天的數據記錄如下:
5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
對這20個數據按組距1000進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
步數分組統(tǒng)計表(設步數為x)
組別 | 步數分組 | 頻數 |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
(Ⅰ)寫出m,n的值,若該“微信運動”團隊共有120人,請估計該團隊中一天行走步數不少于7500步的人數;
(Ⅱ)記C組步數數據的平均數與方差分別為v1, ,E組步數數據的平均數與方差分別為v2, ,試分別比較v1與v2, 與的大小;(只需寫出結論)
(Ⅲ)從上述A,E兩個組別的步數數據中任取2個數據,求這2個數據步數差的絕對值大于3000步的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com