如圖,P是拋物線C:y=x2上一點(diǎn),直線l過點(diǎn)P且與拋物線C交于另一點(diǎn)Q.
(Ⅰ)若直線l與過點(diǎn)P的切線垂直,求線段PQ中點(diǎn)M的軌跡方程;
(Ⅱ)若直線l不過原點(diǎn)且與x軸交于點(diǎn)S,與y軸交于點(diǎn)T,試求的取值范圍.

【答案】分析:(1)設(shè)M(x,y),欲求點(diǎn)M的軌跡方程,即尋找其坐標(biāo)的關(guān)系,可通過另外兩點(diǎn)P,Q與中點(diǎn)M的關(guān)系結(jié)合中點(diǎn)坐標(biāo)公式求解,
(2)欲的取值范圍,可轉(zhuǎn)化為將其表示成某變量的表達(dá)式,然后再求此表達(dá)式的最值問題,另外,為了化簡比例式,一般將線段投影到坐標(biāo)軸上的線段解決.
解答:解:(Ⅰ)設(shè)P(x1,y1),Q(x2,y2),M(x,y),依題意x1≠0,y1>0,y2>0.
由y=x2,①
得y'=x.
∴過點(diǎn)P的切線的斜率k=x1,
∴直線l的斜率kl=-=-
∴直線l的方程為y-x12=-(x-x1),②
聯(lián)立①②消去y,得x2+x-x12-2=0.
∵M(jìn)是PQ的中點(diǎn)
∴x==-,y=x12-(x-x1
消去x1,得y=x2++1(x≠0),
∴PQ中點(diǎn)M的軌跡方程為y=x2++1(x≠0).

(Ⅱ)設(shè)直線l:y=kx+b,依題意k≠0,b≠0,則T(0,b).
分別過P、Q作PP'⊥x軸,QQ'⊥y軸,垂足分別為P'、Q',則=
由y=x2,y=kx+b消去x,得y2-2(k2+b)y+b2=0.③
則y1+y2=2(k2+b),y1y2=b2
=|b|()≥2|b|=2|b|=2.
∵y1、y2可取一切不相等的正數(shù),
的取值范圍是(2,+∞).
點(diǎn)評:本題主要考查直線、拋物線、不等式等基礎(chǔ)知識(shí),求軌跡方程的方法,解析幾何的基本思想和綜合解題能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,P是拋物線C:y=
12
x2上一點(diǎn),直線l過點(diǎn)P且與拋物線C交于另一點(diǎn)Q.若直線l與過點(diǎn)P的切線垂直,求線段PQ中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,P是拋物線C:y=
1
2
x2上一點(diǎn),直線l過點(diǎn)P且與拋物線C交于另一點(diǎn)Q.
(Ⅰ)若直線l與過點(diǎn)P的切線垂直,求線段PQ中點(diǎn)M的軌跡方程;
(Ⅱ)若直線l不過原點(diǎn)且與x軸交于點(diǎn)S,與y軸交于點(diǎn)T,試求
|ST|
|SP|
+
|ST|
|SQ|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,P是拋物線C:y=
12
x2上一點(diǎn),直線l過點(diǎn)P并與拋物線C在點(diǎn)P的切線垂直,l與拋物線C相交于另一點(diǎn)Q.
(Ⅰ)當(dāng)點(diǎn)P的橫坐標(biāo)為2時(shí),求直線l的方程;
(Ⅱ)當(dāng)點(diǎn)P在拋物線C上移動(dòng)時(shí),求線段PQ中點(diǎn)M的軌跡方程,并求點(diǎn)M到x軸的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P是拋物線C:y=
12
x2上橫坐標(biāo)大于零的一點(diǎn),直線l過點(diǎn)P并與拋物線C在點(diǎn)P處的切線垂直,直線l與拋物線C相交于另一點(diǎn)Q.當(dāng)點(diǎn)P的橫坐標(biāo)為2時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P是拋物線C:x2=2y上一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),直線l過點(diǎn)P且與拋物線交于另一點(diǎn)Q,已知P(x1,y1),Q(x2,y2).
(1)若l經(jīng)過點(diǎn)F,求弦長|PQ|的最小值;
(2)設(shè)直線l:y=kx+b(k≠0,b≠0)與x軸交于點(diǎn)S,與y軸交于點(diǎn)T
①求證:
|ST|
|SP|
+
|ST|
|SQ|
=|b|(
1
y1
+
1
y2
)

②求
|ST|
|SP|
+
|ST|
|SQ|
的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案