【題目】已知橢圓C:過點(diǎn),且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過原點(diǎn)的直線與橢圓C交于P、Q兩點(diǎn),且在直線上存在點(diǎn)M,使得為等邊三角形,求直線的方程。
【答案】(Ⅰ)(Ⅱ)y=0或y=
【解析】
(Ⅰ)列a,b,c的方程組求解即可求得方程;(Ⅱ)當(dāng)的斜率k=0時(shí)符合題意;當(dāng)的斜率k0時(shí),設(shè)直線與橢圓聯(lián)立,求得P,Q坐標(biāo),進(jìn)而求得設(shè)直線的中垂線方程:,求其與的交點(diǎn)M,由為等邊三角形,得到解方程求得k值即可
(Ⅰ)由題解得a=,b=,c=,橢圓C的方程為
(Ⅱ)由題,當(dāng)的斜率k=0時(shí),此時(shí)PQ=4 直線與y軸的交點(diǎn)(0,滿足題意;
當(dāng)的斜率k0時(shí),設(shè)直線與橢圓聯(lián)立得=8,,設(shè)P(),則Q(),,又PQ的垂直平分線方程為由,解得,,, ∵為等邊三角形即解得k=0(舍去),k=,直線的方程為y=
綜上可知,直線的方程為y=0或y=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
(1)討論函數(shù)的極值;
(2)已知函數(shù),若函數(shù)在上恰有三個零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有4個不同的球,4個不同的盒子,把球全部放入盒子內(nèi).
(1)共有幾種放法?
(2)恰有2個盒子不放球,有幾種放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校要從甲、乙兩名同學(xué)中選擇一人參加該市組織的數(shù)學(xué)競賽,已知甲、乙兩名同學(xué)最近7次模擬競賽的數(shù)學(xué)成績(滿分100分)如下:
甲:79,81,83,84,85,90,93;
乙:75,78,82,84,90,92,94.
(1)完成答題卡中的莖葉圖;
(2)分別計(jì)算甲、乙兩名同學(xué)最近7次模擬競賽成績的平均數(shù)與方差,并由此判斷該校應(yīng)選擇哪位同學(xué)參加該市組織的數(shù)學(xué)競賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、為兩條不同的直線,、、為三個不同的平面,則下列命題正確的是( )
A.,,則B.,,則
C.,,則與是異面直線D.,,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與圓心為坐標(biāo)原點(diǎn)的圓相切.
(1)求圓的方程;
(2)過點(diǎn)的直線與圓交于 兩點(diǎn),若弦長,求直線的斜率的值;
(3)過點(diǎn)作兩條相異直線分別與圓相交于,且直線和直線的傾斜角互補(bǔ),試著判斷向量和是否共線?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),給出下列關(guān)于的性質(zhì):
①是周期函數(shù),3是它的一個周期;
②是偶函數(shù);
③方程有有理根;
④方程與方程的解集相同;
⑤是周期函數(shù),是它的一個周期.
其中正確的個數(shù)為( 。
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某度假酒店為了解會員對酒店的滿意度,從中抽取50名會員進(jìn)行調(diào)查,把會員對酒店的“住宿滿意度”與“餐飲滿意度”都分為五個評分標(biāo)準(zhǔn):1分(很不滿意);2分(不滿意);3分(一般);4分(滿意);5分(很滿意).其統(tǒng)計(jì)結(jié)果如下表(住宿滿意度為,餐飲滿意度為)
(1)求“住宿滿意度”分?jǐn)?shù)的平均數(shù);
(2)求“住宿滿意度”為3分時(shí)的5個“餐飲滿意度”人數(shù)的方差;
(3)為提高對酒店的滿意度,現(xiàn)從且的會員中隨機(jī)抽取2人征求意見,求至少有1人的“住宿滿意度”為2的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)f′(x)滿足f′(1)=2a,f′(2)=-b,其中常數(shù)a,b∈R.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)設(shè)g(x)=f′(x)e-x,求函數(shù)g(x)的極值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com