分析 (1)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為h(t)=lnt-t2+1,t∈[$\frac{\sqrt{2}}{2}$,+∞),根據(jù)函數(shù)的單調(diào)性求出a的值即可;
(2)求出a=$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$+x1+x2,問題轉(zhuǎn)化為證明$\frac{2(\frac{{x}_{1}}{{x}_{2}}-1)}{\frac{{x}_{1}}{{x}_{2}}+1}$>ln$\frac{{x}_{1}}{{x}_{2}}$(*),令$\frac{{x}_{1}}{{x}_{2}}$=t∈(0,1),則g(x)=(1+t)lnt-2t+2,根據(jù)函數(shù)的單調(diào)性證明即可.
解答 解:(1)依題意有l(wèi)nx0+${{x}_{0}}^{2}$-ax0=-2,$\frac{1}{{x}_{0}}$+2x0-a=0,…(2分)
消去a得lnx0-${{x}_{0}}^{2}$+1=0,x0∈[$\frac{\sqrt{2}}{2}$,+∞),…(3分)
h(t)=lnt-t2+1,t∈[$\frac{\sqrt{2}}{2}$,+∞),
顯然h(1)=0,且h′(t)=$\frac{1}{t}$-2t=$\frac{1-{2t}^{2}}{t}$≤0,
故lnx0-${{x}_{0}}^{2}$+1=0當(dāng)且僅當(dāng)x0=1,…(4分)
所以a=$\frac{1}{{x}_{0}}$+2x0=3…(5分)
(2)x1,x2是函數(shù)f(x)的兩個零點(diǎn)有f(x1)=lnx1+${{x}_{1}}^{2}$-ax1=0,
f(x2)=lnx2+${{x}_{2}}^{2}$-ax2=0,相減得a=$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$+x1+x2,…(5分)
∵f′($\frac{{x}_{1}{+x}_{2}}{2}$)=$\frac{2}{{x}_{1}{+x}_{2}}$-$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$ …(6分)
所以要證明f′($\frac{{x}_{1}{+x}_{2}}{2}$)<0,只需證明$\frac{2}{{x}_{1}{+x}_{2}}$-$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$<0,(0<x1<x2),
即證明$\frac{2{(x}_{1}{-x}_{2})}{{{x}_{1}+x}_{2}}$>lnx1-lnx2,即證明$\frac{2(\frac{{x}_{1}}{{x}_{2}}-1)}{\frac{{x}_{1}}{{x}_{2}}+1}$>ln$\frac{{x}_{1}}{{x}_{2}}$(*) …(9分)
令$\frac{{x}_{1}}{{x}_{2}}$=t∈(0,1),則g(x)=(1+t)lnt-2t+2,
則g′(t)=lnt+$\frac{1}{t}$-1,g″(t)=$\frac{1}{t}$-$\frac{1}{{t}^{2}}$<0,
∴g′(t)在(0,1)遞減,g′(t)>g′(1)=2>0,
∴g(t)在(0,1)遞增,g(t)<g(1)=0,
所以(*)成立,即f′($\frac{{x}_{1}{+x}_{2}}{2}$)<0.…(12分)
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{17}{5}$ | B. | -$\frac{17}{4}$ | C. | -$\frac{16}{5}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${e^{\frac{1}{e}+2}}$ | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{4}{3}$] | B. | [3,+∞) | C. | [-2$\sqrt{2}$,2$\sqrt{2}$] | D. | [-3,3] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com