分析 (1)根據(jù)公式V${\;}_{{D}_{1}-ADE}$=V${\;}_{A-{D}_{1}DE}$=$\frac{1}{3}$S${\;}_{△{D}_{!}DE}$•AD計算體積;
(2)取AC中點M,連接EM,DM,則可證明D1A∥平面MDE,從而得出AC的中點為所點.
解答 解:(1)∵AD⊥平面D1CD,
∴AD是三棱錐A-D1DE的高.
∵E為D1C的中點,且D1D=DC=4,
∴${S_{△{D_1}DE}}=4$,
又AD=2,
∴${V_{{D_1}-ADE}}={V_{A-DE{D_1}}}=\frac{8}{3}$.
(2)取AC中點M,連接EM,DM,
因為E為D1C的中點,M是AC的中點,
∴EM∥D1A.
又∵EM?平面MDE,D1A?平面MDE,
∴D1A∥平面MDE.∴$AM=\sqrt{5}$.
即在AC邊上存在一點M,使得D1A∥平面MDE,此時M是AC的中點$AM=\sqrt{5}$.
點評 本題考查了棱錐的體積計算,線面平行的判定定理,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-3<x<-1} | B. | {x|2<x<3} | C. | {x|-3<x<-1或2<x<3} | D. | {x|-3<x<-2或1<x<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | -4 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2} | B. | {2,3} | C. | {1,3} | D. | {1,2,3,4,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}-\frac{4}{5}i$ | B. | $-\frac{3}{5}+\frac{4}{5}i$ | C. | $1+\frac{4}{5}i$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com