14.下列四個(gè)函數(shù)中,是偶函數(shù)的是( 。
A.y=2xB.y=1-sin2xC.y=lg2xD.y=x3-$\frac{1}{x}$

分析 運(yùn)用奇偶性的定義和常見(jiàn)函數(shù)的性質(zhì),即可判斷結(jié)論.

解答 解:A為指數(shù)函數(shù),沒(méi)有奇偶性;
B,定義域?yàn)镽,且f(-x)=1-sin2(-x)=1-sin2x=f(x),即f(x)為偶函數(shù);
C,定義域?yàn)镽+,沒(méi)有奇偶性;
D,定義域?yàn)閧x|x≠0},且f(-x)=-f(x),則D為奇函數(shù).
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性的判斷,注意運(yùn)用定義法,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知△ABC內(nèi)角A、B、C的對(duì)邊分別是a、b、c,BC邊的高是AD,且BC=AD,則$\frac{c}$+$\frac{c}$的最大值是( 。
A.2B.$\frac{5}{2}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩焦點(diǎn)為F1、F2,斜率為K的直線(xiàn)過(guò)右焦點(diǎn)F2,與橢圓交于A、B,與Y軸交于C,B為CF2的中點(diǎn),若|k|≤$\frac{2\sqrt{5}}{5}$,則橢圓離心率e的取值范圍是[$\frac{2\sqrt{5}}{5}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點(diǎn)為F$(-\sqrt{2},0)$,離心率e=$\frac{\sqrt{2}}{2}$,M、N是橢圓上的動(dòng)點(diǎn).
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)動(dòng)點(diǎn)P滿(mǎn)足:$\overrightarrow{OP}=\overrightarrow{OM}+2\overrightarrow{ON}$,直線(xiàn)OM與ON的斜率之積為-$\frac{1}{2}$,問(wèn):是否存在定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值?若存在,求出F1,F(xiàn)2的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)函數(shù)f(x)滿(mǎn)足:f(x)=f($\frac{1}{x}$)•1gx+1,則函數(shù)f(x)=$\frac{lgx+1}{l{g}^{2}x+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ex-x-m(m∈R).
(1)求f(x)的最小值;
(2)判斷f(x)的零點(diǎn)個(gè)數(shù),說(shuō)明理由;
(3)若f(x)有兩個(gè)零點(diǎn)x1、x2,證明:x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)若函數(shù)g(x)=f($\sqrt{x}$)+ax+2在(e2,+∞)單調(diào)遞減,求a的取值范圍;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線(xiàn)l∥AB,則稱(chēng)直線(xiàn)AB存在“伴侶切線(xiàn)”.特別地,當(dāng)x0=$\frac{{{x_1}+{x_2}}}{2}$時(shí),又稱(chēng)直線(xiàn)AB存在“中值伴侶切線(xiàn)”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線(xiàn)AB是否存在“中值伴侶切線(xiàn)”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在△ABC中,若∠BAC=60°,AB=5,AC=6,則△ABC的面積S=$\frac{15\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在平面直角坐標(biāo)系xOy中,以C(1,1)為圓心的圓與x軸和y軸分別相切于A,B兩點(diǎn),點(diǎn)M,N分別在線(xiàn)段OA,OB上,若,MN與圓C相切,則|MN|的最小值為( 。
A.1B.$2-\sqrt{2}$C.$2\sqrt{2}+2$D.$2\sqrt{2}-2$

查看答案和解析>>

同步練習(xí)冊(cè)答案