已知曲線C:y=x2與直線l:x-y+2=0交于兩點(diǎn)A(xA,yA)和B(xB,yB),且xA<xB.記曲線C在點(diǎn)A和點(diǎn)B之間那一段L與線段AB所圍成的平面區(qū)域(含邊界)為D.設(shè)點(diǎn)P(s,t)是L上的任一點(diǎn),且點(diǎn)P與點(diǎn)A和點(diǎn)B均不重合.
(1)若點(diǎn)Q是線段AB的中點(diǎn),試求線段PQ的中點(diǎn)M的軌跡方程;
(2)若曲線G:x2-2ax+y2-4y+a2+=0與D有公共點(diǎn),試求a的最小值.
【答案】分析:(1)欲求線段PQ的中點(diǎn)M的軌跡方程,設(shè)線段PQ的中點(diǎn)M坐標(biāo)為(x,y),即要求x,y間的關(guān)系式,先利用x,y列出點(diǎn)P(s,t)的坐標(biāo)結(jié)合點(diǎn)P在曲線C上即得;
(2)處理圓與D有無(wú)公共點(diǎn)的問題,須分兩種情形討論:當(dāng)時(shí)和當(dāng)a<0時(shí).對(duì)于后一種情形,只須只需考慮圓心E到直線l:x-y+2=0的距離即可,從而求得求a的最小值.
解答:解:(1)聯(lián)立y=x2與y=x+2得xA=-1,xB=2,則AB中點(diǎn),設(shè)線段PQ的中點(diǎn)M坐標(biāo)為(x,y),則,即,又點(diǎn)P在曲線C上,
化簡(jiǎn)可得,
又點(diǎn)P是L上的任一點(diǎn),且不與點(diǎn)A和點(diǎn)B重合,
,即
∴中點(diǎn)M的軌跡方程為).
(2)曲線G:x2-2ax+y2-4y+a2+=0,
即圓E:,其圓心坐標(biāo)為E(a,2),半徑
由圖可知,當(dāng)時(shí),曲線G:x2-2ax+y2-4y+a2+=0與點(diǎn)D有公共點(diǎn);
當(dāng)a<0時(shí),要使曲線G:x2-2ax+y2-4y+a2+=0與點(diǎn)D有公共點(diǎn),
只需圓心E到直線l:x-y+2=0的距離
,
,則a的最小值為
點(diǎn)評(píng):本小題主要考查直線與圓錐曲線的綜合問題、軌跡方程、拋物線方程、圓的方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、化歸與轉(zhuǎn)化思想.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C:y=x2與直線l:x-y+2=0交于兩點(diǎn)A(xA,yA)和B(xB,yB),且xA<xB.記曲線C在點(diǎn)A和點(diǎn)B之間那一段L與線段AB所圍成的平面區(qū)域(含邊界)為D.設(shè)點(diǎn)P(s,t)是L上的任一點(diǎn),且點(diǎn)P與點(diǎn)A和點(diǎn)B均不重合,若點(diǎn)Q是線段AB的中點(diǎn),試求線段PQ的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C:y=x2與直線l:x-y+2=0交于兩點(diǎn)A(xA,yA)和B(xB,yB),且xA<xB.記曲線C在點(diǎn)A和點(diǎn)B之間那一段L與線段AB所圍成的平面區(qū)域(含邊界)為D.設(shè)點(diǎn)P(s,t)是L上的任一點(diǎn),且點(diǎn)P與點(diǎn)A和點(diǎn)B均不重合.
(1)若點(diǎn)Q是線段AB的中點(diǎn),試求線段PQ的中點(diǎn)M的軌跡方程;
(2)若曲線G:x2-2ax+y2-4y+a2+
5125
=0與D有公共點(diǎn),試求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、已知曲線C:y=x2,則過(guò)點(diǎn)P(1,0)的曲線C的切線斜率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•湖北模擬)已知曲線C:y=x2(x>0),過(guò)C上的點(diǎn)A1(1,1)作曲線C的切線l1交x軸于點(diǎn)B1,再過(guò)B1作y軸的平行線交曲線C于點(diǎn)A2,再過(guò)A2作曲線C的切線l2交x軸于點(diǎn)B2,再過(guò)B2作y軸的平行線交曲線C于點(diǎn)A&3,…,依次作下去,記點(diǎn)An的橫坐標(biāo)為an(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn=(8-2n)an,設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,求證:0<Tn≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知曲線C:y=x2(0≤x≤1),O(0,0),Q(1,0),R(1,1).取線段OQ的中點(diǎn)A1,過(guò)A1作x軸的垂線交曲線C于P1,過(guò)P1作y軸的垂線交RQ于B1,記a1為矩形A1P1B1Q的面積.分別取線段OA1,P1B1的中點(diǎn)A2,A3,過(guò)A2,A3分別作x軸的垂線交曲線C于P2,P3,過(guò)P2,P3分別作y 軸的垂線交A1P1,RB1于B2,B3,記a2為兩個(gè)矩形A2P2B2A1與矩形A3P3B3B1的面積之和.以此類推,記an為2n-1個(gè)矩形面積之和,從而得數(shù)列{an},設(shè)這個(gè)數(shù)列的前n項(xiàng)和為Sn
(Ⅰ) 求a2與an;
(Ⅱ) 求Sn,并證明Sn
13

查看答案和解析>>

同步練習(xí)冊(cè)答案