解:(1)橢圓C:
,
,c=m,∴F(m,0),直線AB:y=k(x-m),
,(10k
2+6)x
2-20k
2mx+10k
2m
2-15m
2=0.設(shè)A(x
1,y
1),B(x
2,y
2),
則x
1+x
2=
,
x
1x
2=
;則x
m=
,
,若存在k,使AB為ON的中點,∴
.
∴
,
即N點坐標為
.由N點在橢圓上,則
即5k
4-2k
2-3=0.∴k
2=1或k
2=-
(舍).故存在k=±1使
.
(2)
=x
1x
2+k
2(x
1-m)(x
2-m)=(1+k
2)x
1x
2-k
2m(x
1+x
2)+k
2m
2=(1+k
2)•
,
由
,得
=-
≤-2m
2,
即k
2-15≤-20k
2-12,k2≤
,∴
,且k≠0.
分析:(1)橢圓C:
,
,c=m,F(xiàn)(m,0),直線AB:y=k(x-m),由
,得(10k
2+6)x
2-20k
2mx+10k
2m
2-15m
2=0.設(shè)A(x
1,y
1),B(x
2,y
2),然后結(jié)合韋達定理進行求解.
(2)
=x
1x
2+k
2(x
1-m)(x
2-m)=(1+k
2)x
1x
2-k
2m(x
1+x
2)+k
2m
2=(1+k
2)•由此結(jié)合
,能夠?qū)С鰧崝?shù)k的取值范圍.
點評:本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與橢圓的相關(guān)知識,解題時要注意合理地進行等價轉(zhuǎn)化.