7.已知復(fù)數(shù)z滿足$\frac{1-2i}{z}=i$,則z的共軛復(fù)數(shù)的虛部為( 。
A.2B.-2C.1D.-1

分析 利用復(fù)數(shù)的運算法則、共軛復(fù)數(shù)與虛部的定義即可得出.

解答 解:∵$\frac{1-2i}{z}=i$,∴z=$\frac{1-2i}{i}$=$\frac{-i(1-2i)}{-i•i}$=-2-i
則z的共軛復(fù)數(shù)-2+i的虛部為1.
故選:C.

點評 本題考查了復(fù)數(shù)的運算法則、共軛復(fù)數(shù)與虛部的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)$f(x)={log_a}^{(3-ax)}$
(1)若f(x)的圖象經(jīng)過點(4,1),求a的值
(2)是否存在實數(shù)a,使得函數(shù)f(x)在區(qū)間[1,2]上為減函數(shù),并且最大值為1?如果存在,試求出a的值,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列各組數(shù)的大小比較正確的是(  )
A.2${\;}^{\frac{1}{2}}$<($\frac{1}{2}$)3B.($\frac{3}{4}$)${\;}^{-\frac{1}{2}}$>($\frac{3}{4}$)${\;}^{-\frac{1}{3}}$
C.53.1<33.1D.0.3${\;}^{-\frac{1}{5}}$>0.3${\;}^{-\frac{1}{3}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知坐標平面上三點A(6,0),B(0,2$\sqrt{3}$),C(cosα,sinα),α∈[0,2π)
(1)求△ABC面積的表達式,并化簡成一個角的一個三角函數(shù)形式;
(參考公式:△ABC中,若$\overrightarrow{CA}$=(x1,y1),$\overrightarrow{CB}$(x2,y2),則S△ABC=$\frac{1}{2}$|x1y2-x2y1|)
(2)若($\overrightarrow{OA}+\overrightarrow{OC}$)2=43,(O為坐標原點),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合A={-2,-1,0,1},B={0,1,2},則A∩B=( 。
A.{0,1}B.{0,1,-1}C.{-2,-1,0,1,2}D.{-2,-1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,c=4且$\sqrt{3}a=2csinA$,則△ABC面積的最大值為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在△ABC中,AB=2,AC=1,∠BAC=120°,若$\overrightarrow{BD}=2\overrightarrow{DC}$,則$\overrightarrow{AD}•\overrightarrow{BC}$的值為(  )
A.$-\frac{1}{3}$B.$-\frac{2}{3}$C.-1D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知x,y滿足約束條件$\left\{{\begin{array}{l}{3x-y≤0}\\{2y-3x-6≤0}\\ \begin{array}{l}x≥0\\ y≥0\end{array}\end{array}}\right.$,則$z=\frac{2^x}{{\sqrt{2^y}}}$的最小值為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.1D.${2^{-\frac{3}{2}}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=sinωx+3sin(ωx+$\frac{π}{2}$)(ω>0)的最小正周期為π,則ω的值( 。
A.1B.2C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

同步練習冊答案