(2012•深圳一模)設(shè)S是實(shí)數(shù)集R的非空子集,如果?a,b∈S,有a+b∈S,a-b∈S,則稱S是一個“和諧集”.下面命題為假命題的是( 。
分析:根據(jù)已知中關(guān)于和諧集的定義:S是實(shí)數(shù)集R的非空子集,如果?a,b∈S,有a+b∈S,a-b∈S,則稱S是一個“和諧集”.我們利用題目四個結(jié)論中所給的運(yùn)算法則,對所給的集合進(jìn)行判斷,特別是對特殊元素進(jìn)行判斷,即可得到答案.
解答:解:A是真命題 S={0}是和諧集;
B是真命題:
設(shè) x1=k1a,x2=k2a,k1,k2∈Z
x1+x2=(k1+k2)a∈S
x1-x2=(k1-k2)a∈S
∴S={x|x=ka,a是無理數(shù),k∈Z)是和諧集
C是真命題:任意和諧集中一定含有0,
∴S1∩S2≠∅;
D假命題
取S1={x|x=2k,k∈Z},S2={x|x=3k,k∈Z∈}
S1,S2均是和諧集,但5不屬于S1,也不屬于S2
∴S1∪S2不是實(shí)數(shù)集.
故選D.
點(diǎn)評:此題考查學(xué)生理解新定義的能力,會判斷元素與集合的關(guān)系,是一道比較新的題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)隨機(jī)調(diào)查某社區(qū)80個人,以研究這一社區(qū)居民在20:00-22:00時間段的休閑方式與性別有關(guān)系,得到下面的數(shù)據(jù)表:
休閑方式
性別
看電視 看書 合計
10 50 60
10 10 20
合計 20 60 80
(1)將此樣本的頻率估計為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00-22:00時間段的休閑方式與性別有關(guān)系”?
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥K0 0.15 0.10 0.05 0.025 0.010
K0 2.072 2.706 3.841 5.042 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知點(diǎn)P(x,y)在不等式組
x-2≤0
y-1≤0
x+2y-2≥0
表示的平面區(qū)域上運(yùn)動,則z=x-y的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知等比數(shù)列{an}的第5項是二項式(
x
-
1
3x
)6
展開式的常數(shù)項,則a3a7=
25
9
25
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)如圖,平行四邊形ABCD中,AB⊥BD,AB=2,BD=
2
,沿BD將△BCD折起,使二面角A-BD-C是大小為銳角α的二面角,設(shè)C在平面ABD上的射影為O.

(1)當(dāng)α為何值時,三棱錐C-OAD的體積最大?最大值為多少?
(2)當(dāng)AD⊥BC時,求α的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知數(shù)列{an}滿足:a1=
1
2
,an+1=
an
enan+e
,n∈N*
(其中e為自然對數(shù)的底數(shù)).
(1)求數(shù)列{an}的通項an
(2)設(shè)Sn=a1+a2+…+an,Tn=a1•a2•a3•…•an,求證:Sn
n
n+1
,Tne-n2

查看答案和解析>>

同步練習(xí)冊答案