已知:
sinθ-cosθsinθ+2cosθ
=-1 
求證:3sin2θ=-4cos2θ
分析:由條件可得cosθ=-2sinθ,sin2 θ=
1
5
,化簡3sin2θ+4cos2θ=-20sin2θ+4=0,從而證得3sin2θ=-4cos2θ 成立.
解答:證明:由已知 cosθ=-2sinθ,又sin2θ+cos2θ=1,所以,sin2 θ=
1
5

故 3sin2θ+4cos2θ=6sinθ(-2sin θ)+4(1-2sin2θ )=-12sin2θ+4-8sin2θ
=-20sin2θ+4=0,所以,3sin2θ=-4cos2θ.
點評:本題考查三角函數(shù)的恒等變換及化簡證明,求出cosθ=-2sinθ,及sin2 θ=
1
5
,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知coα=-
513
,α為第三象限角,求sinα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標系與參數(shù)方程在極坐標系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2
3
求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2+
1
ab
≥4.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省嘉興市桐鄉(xiāng)市茅盾中學高一(下)3月月考數(shù)學試卷(解析版) 題型:解答題

已知coα=-,α為第三象限角,求sinα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市金陵中學高三(上)學情調研數(shù)學試卷(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設a>0,b>0,若矩陣A=把圓C:x2+y2=1變換為橢圓E:=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標系與參數(shù)方程在極坐標系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2≥4.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市高三(上)學情調研數(shù)學試卷(二)(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設a>0,b>0,若矩陣A=把圓C:x2+y2=1變換為橢圓E:=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標系與參數(shù)方程在極坐標系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2≥4.

查看答案和解析>>

同步練習冊答案