定義方程f(x)=f′(x)(f′(x)是f(x)的導函數(shù))的實數(shù)根x0叫做函數(shù)的f(x)“新駐點”,若函數(shù)g(x)=x,r(x)=ln(x+1),φ(x)=x3-1的“新駐點”分別為α,β,γ,則α,β,γ的大小關系為( 。
A、α>β>γB、β>α>γC、β>γ>αD、γ>α>β
分析:①g′(x)=1,由g(x)=g′(x),解得α=1.
r(x)=
1
x+1
,由r(x)=r′(x),得到ln(x+1)=
1
x+1
,由x+1>0,可得
1
x+1
>0
,于是0<x+1<1,可得-1<β<0.
③由φ′(x)=3x2,φ(x)=φ′(x),得x3-1=2x2,可得x3-1>0,可得γ>1.
解答:解:①∵g(x)=x,∴g′(x)=1,由g(x)=g′(x),解得x=1,∴α=1.
②∵r(x)=ln(x+1),∴r(x)=
1
x+1
,由r(x)=r′(x),得到ln(x+1)=
1
x+1
,
∵x+1>0,∴
1
x+1
>0
,∴0<x+1<1,∴-1<x<0,即-1<β<0.
③∵φ(x)=x3-1,∴φ′(x)=3x2,由φ(x)=φ′(x),得x3-1=2x2,
∵2x2>0,(x=0時不成立),∴x3-1>0,∴x>1,∴γ>1.
綜上可知:γ>α>β.
故選:D.
點評:本題考查了導數(shù)的運算法則、新定義“新駐點”、對數(shù)函數(shù)的單調性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義方程f(x)=f′(x)的實數(shù)根x0叫做函數(shù)f(x)的“新駐點”,若函數(shù)g(x)=x,h(x)=ln(x+1),φ(x)=x3-1的“新駐點”分別為α,β,γ,則α,β,γ的大小關系為(  )
A、α>β>γB、β>α>γC、γ>α>βD、β>γ>α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義方程f(x)=f′(x)的實數(shù)根x0叫做函數(shù)f(x)的“新駐點”,若函數(shù)g(x)=x,h(x)=ln(x+1),φ(x)=x3-lg(x)=x,h(x)=ln(x+1),φ(x)=x3-1的“新駐點”分別為α,β,γ,則α,β,γ的大小關系為( 。
A、α>β>γB、β>α>γC、γ>α>βD、β>γ>α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•云南模擬)定義方程f(x)=f′(x)的實數(shù)根x0叫做函數(shù)f(x)的“新駐點”,如果函數(shù)g(x)=x,h(x)=lnx,φ(x)=cosx(x∈(
π
2
,π))的“新駐點”分別為α,β,γ,那么α,β,γ的大小關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義方程f(x)=f′(x)的實數(shù)根x0叫做函數(shù)f(x)的“新駐點”,若函數(shù)g(x)=2x,h(x)=lnx,φ(x)=x3(x≠0)的“新駐點”分別為a,b,c,則a,b,c的大小關系為( 。

查看答案和解析>>

同步練習冊答案