8.若變量x,y滿足約束條件$\left\{\begin{array}{l}x+y-3≤0\\ x-y+1>0\\ y≥1\end{array}$,則z=$\frac{x+2y}{x}$的最小值為( 。
A.0B.1C.2D.3

分析 首先由約束條件畫出可行域,根據(jù)目標函數(shù)的幾何意義求最小值.

解答 解:已知得到可行域如圖:
z=$\frac{x+2y}{x}$=1+2×$\frac{y}{x}$的幾何意義是表示區(qū)域內(nèi)的點與原點連接直線的斜率的2倍加上1,由圖可知,直線OA 的斜率最小,所以z=$\frac{x+2y}{x}$的最小值為1+2×$\frac{1}{2}$=2;
故選C.

點評 本題考查了簡單線性規(guī)劃問題;正確畫出可行域,根據(jù)目標函數(shù)的幾何意義求最值是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.從-1,0,1,3,4,這五個數(shù)中任選一個數(shù)記為a,則使雙曲線y=$\frac{7-3a}{x}$在第一、三象限且不等式組$\left\{\begin{array}{l}{2x+3>9}\\{x-a<0}\end{array}\right.$無解的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)銳角△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c成等比數(shù)列,且sinAsinC=$\frac{3}{4}$,則角B=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若函數(shù)f(x)=$\sqrt{({m-1}){x^2}-({1-m})x+1}$的定義域是R,則實數(shù)m的取值范圍是[1,5].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知等差數(shù)列{an}的前n項和為Sn,a2=0,S5=2a4-1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知{an}為等差數(shù)列,若a1+a5+a9=8π,則cos(a2+a8)=(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知點 A(1,3),B(3,1),C(-1,0),則△ABC的面積為( 。
A.5B.$5\sqrt{2}$C.10D.$10\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,角A、B、C的對邊分別為a,b,c,且滿足a2-b2-c2+$\sqrt{3}$bc=0,2bsinA=a,BC邊上中線AM的長為$\sqrt{14}$
( I)求角A和角B的大;
( II)求△ABC的各邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若$α∈(\frac{π}{2},π)$,則$\frac{3}{2}cos2α=sin(\frac{π}{4}-α)$,則sin2α的值為( 。
A.$\frac{2}{9}$B.$-\frac{2}{9}$C.$\frac{7}{9}$D.$-\frac{7}{9}$

查看答案和解析>>

同步練習冊答案