一塊橡皮1元錢,一枝筆2元錢,問100元錢能買橡皮和筆各多少?
數(shù)學(xué)模型:設(shè)能買橡皮X塊,筆Y枝,則X+2Y=100.求此方程的正整數(shù)解.
設(shè)計(jì)一個(gè)求此問題的算法,畫出流程圖并用偽代碼表示.
考點(diǎn):設(shè)計(jì)程序框圖解決實(shí)際問題,偽代碼
專題:應(yīng)用題,算法和程序框圖
分析:本題考查的知識(shí)點(diǎn)是設(shè)計(jì)程序框圖解決實(shí)際問題,我們根據(jù)題意即可確定算法,畫出流程圖,再編寫滿足題意的程序.
解答: 解:偽代碼如下:
Begin
For Y from 1 to 49
  X=100-2Y
  Print X,Y
End for
End
流程圖如下:
點(diǎn)評(píng):本題考查了設(shè)計(jì)程序框圖解決實(shí)際問題,主要考查編寫偽代碼程序解決實(shí)際問題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=-
1
an+2
,a1=-
1
2

(1)求證{
1
an+1
}是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)Tn=an+an+1+…+a2n-1,若Tn≥p-n對(duì)任意的n∈N*恒成立,求p的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:△ABC中,|
AB
|=5,
AB
AC
=24
,
BA
BC
夾角正切為18,求|
AC
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的一個(gè)點(diǎn),F(xiàn)為該橢圓的左焦點(diǎn),O為坐標(biāo)原點(diǎn),且△POF為正三角形.則該橢圓離心率為( 。
A、4-2
3
B、2-
3
C、
3
-1
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x-a+log2x存在大于1的零點(diǎn),則a的取值范圍是( 。
A、[1,∞)
B、(1,+∞)
C、(0,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某籃球運(yùn)動(dòng)員甲參加了10場比賽,他每場比賽得分的莖葉圖如圖所示,
則數(shù)據(jù)落在區(qū)間[22,30)內(nèi)的概率為( 。
A、0.6B、0.5
C、0.4D、0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx+1(k≠0)與圓x2+(y-1)2=1相交于A,B兩點(diǎn),C點(diǎn)坐標(biāo)(3,0),若點(diǎn)M(a,b)滿足
MA
+
MB
+
MC
=
0
,則a+b=( 。
A、1
B、
5
2
C、
5
3
D、
7
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC是等邊三角形.
(1)求向量
AB
與向量
BC
的夾角;
(2)若E為BC的中點(diǎn),求向量
AE
EC
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù):y=(2x-1)2(3x+2ex

查看答案和解析>>

同步練習(xí)冊(cè)答案