精英家教網 > 高中數學 > 題目詳情
雙曲線的一條漸近線與圓(x-2)2+y2=2相交于M、N兩點且|MN|=2,則此雙曲線的焦距是( )
A.
B.
C.2
D.4
【答案】分析:先根據雙曲線方程求得其中一條漸近線方程,根據題意可知圓心到漸近線的距離為1,進而表示出圓心到漸近線的距離,求得b,則c可得,焦距為2c.
解答:解:依題意可知雙曲線的一漸近線方程為y=x,即x-3y=0,
∵|MN|=2,圓的半徑為
∴圓心到漸近線的距離為1,即,解得b=1
∴c==2,
∴雙曲線的焦距為4
故選D
點評:本題主要考查了雙曲線的簡單性質.解題的關鍵是利用數形結合的方法求得圓心到漸進線的距離.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知拋物線y2=2px(p>0)上一點M(1,m)(m>0)到其焦點的距離為5,雙曲線
x2
a
-y2=1
的左頂點為A,若雙曲線的一條漸近線與直線AM平行,則實數a的值是( 。
A、
1
25
B、
1
9
C、
1
5
D、
1
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左頂點與拋物線y2=2px的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準線的交點坐標為(-2,-1),則雙曲線的焦距為( 。
A、2
3
B、2
5
C、4
3
D、4
5

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•天津一模)拋物線y2=2px(p>0)上一點M(1,m) (m>0)到其焦點的距離為5,雙曲線
x2
a
-y2=1
的左頂點為A.若雙曲線的一條漸近線與直線AM平行,則實數a等于
1
9
1
9

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•湖北模擬)已知拋物線y2=2px(p>0)上一點M(1,m)(m>0)到其焦點的距離為5,雙曲線
x2
a2
-y2=1
的左頂點為A,若雙曲線的一條漸近線與直線AM平行,則正實數a的值為
1
3
1
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•臨沂二模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左頂點與拋物線y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準線的交點坐標為(-2,-1),則雙曲線的焦距為
2
5
2
5

查看答案和解析>>

同步練習冊答案