如圖,在三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,AC=BC=BB1=2,D為AB的中點(diǎn),且CD⊥DA1
①求證:BB1⊥平面ABC;
②求多面體DBC-A1B1C1的體積.

【答案】分析:①證明CD⊥BB1,通過(guò)BB1⊥AB,AB∩CD=D,即可證明BB1⊥面ABC.
②利用多面體=,然后求出幾何體的體積即可.
解答:(本題滿分14分)
解:①∵AC=BC,D為AB的中點(diǎn),
∴CD⊥AB,又CD⊥DA1,∴CD⊥面AA1B1B,∴CD⊥BB1,
又BB1⊥AB,AB∩CD=D,∴BB1⊥面ABC.
②多面體=
=
=
=
點(diǎn)評(píng):本題考查線線垂直,線面垂直及多面體的體積的求法技巧,轉(zhuǎn)化思想的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A'B'C'中,若E、F分別為AB、AC的中點(diǎn),平面EB'C'F將三棱柱分成體積為V1、V2的兩部分,那么V1:V2為( 。
A、3:2B、7:5C、8:5D、9:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,則此三棱柱的側(cè)視圖的面積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,四邊形A1ABB1為菱形,∠A1AB=60°,四邊形BCC1B1為矩形,若AB⊥BC且AB=4,BC=3
(1)求證:平面A1CB⊥平面ACB1;
(2)求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•通州區(qū)一模)如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一點(diǎn).
(Ⅰ)求證:BC⊥AM;
(Ⅱ)若N是AB上一點(diǎn),且
AN
AB
=
CM
CC1
,求證:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分別在線段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求證:BC⊥AC1;
(2)試探究:在AC上是否存在點(diǎn)F,滿足EF∥平面A1ABB1,若存在,請(qǐng)指出點(diǎn)F的位置,并給出證明;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案