已知函數(shù)f(x)=x2-ax+(a-1)lnx,a>1.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)證明:若a<5,則對任意x1,x2∈(0,+∞),x1≠x2,有
【答案】分析:(1)根據(jù)對數(shù)函數(shù)定義可知定義域?yàn)榇笥?的數(shù),求出f′(x)討論當(dāng)a-1=1時導(dǎo)函數(shù)大于0,函數(shù)單調(diào)遞增;當(dāng)a-1<1時分類討論函數(shù)的增減性;當(dāng)a-1>1時討論函數(shù)的增減性.
(2)構(gòu)造函數(shù)g(x)=f(x)+x,求出導(dǎo)函數(shù),根據(jù)a的取值范圍得到導(dǎo)函數(shù)一定大于0,則g(x)為單調(diào)遞增函數(shù),則利用當(dāng)x1>x2>0時有g(shù)(x1)-g(x2)>0即可得證.
解答:解:(1)f(x)的定義域?yàn)椋?,+∞).

(i)若a-1=1即a=2,則
故f(x)在(0,+∞)單調(diào)增.
(ii)若a-1<1,而a>1,
故1<a<2,則當(dāng)x∈(a-1,1)時,f′(x)<0;
當(dāng)x∈(0,a-1)及x∈(1,+∞)時,f′(x)>0
故f(x)在(a-1,1)單調(diào)減,
在(0,a-1),(1,+∞)單調(diào)增.
(iii)若a-1>1,即a>2,
同理可得f(x)在(1,a-1)單調(diào)減,
在(0,1),(a-1,+∞)單調(diào)增.
(2)考慮函數(shù)g(x)=f(x)+x=

由于1<a<5,故g'(x)>0,
即g(x)在(0,+∞)單調(diào)增加,
從而當(dāng)x1>x2>0時有g(shù)(x1)-g(x2)>0,
即f(x1)-f(x2)+x1-x2>0,故,
當(dāng)0<x1<x2時,有
點(diǎn)評:考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的能力,以及基本不等式證明的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案