數(shù)列的通項(xiàng)公式為,當(dāng)該數(shù)列的前項(xiàng)和達(dá)到最小時(shí),等于( )
A. B. C. D.
A
【解析】
試題分析:先由an=2n-49,判斷數(shù)列{an}為等差數(shù)列,從而Sn =n2-48n,結(jié)合二次函數(shù)的性質(zhì)可求.解:由an=2n-49可得an+1-an=2(n+1)-49-(2n-49)=2是常數(shù),∴數(shù)列{an}為等差數(shù)列,從而故可知 Sn =n2-48n,結(jié)合二次函數(shù)的性質(zhì)可得,當(dāng)n=24時(shí),和Sn有最小值.故答案為A
考點(diǎn):等差數(shù)列的通項(xiàng)公式,等差數(shù)列的求和公式
點(diǎn)評(píng):本題的考點(diǎn)是等差數(shù)列的通項(xiàng)公式,主要考查了等差數(shù)列的求和公式的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意數(shù)列的函數(shù)性質(zhì)的應(yīng)用
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
4 |
13 |
9 |
28 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省西安市高三下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
數(shù)列的通項(xiàng)公式為,當(dāng)該數(shù)列的前項(xiàng)和達(dá)到最小時(shí),等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年山西大學(xué)附中高二上學(xué)期第一次階段考試數(shù)學(xué)卷 題型:填空題
在數(shù)列中,,且當(dāng)時(shí)有,則數(shù)列的通項(xiàng)公式為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com