(12分)已知函數(shù),且
(1)求;
(2)判斷的奇偶性;
(3)試判斷上的單調(diào)性,并證明。
(1)(2)偶函數(shù)(3)減函數(shù),用定義證明即可

試題分析:(1)解得:,                               ……2分
(2)由(1)得),
,所以是偶函數(shù).                                       ……6分
(3)是減函數(shù).                                                      ……8分
證明:設(shè),即

,                                 ……10分
,,
,,
,即,
是減函數(shù)。                                                      ……12分
點評:利用定義證明函數(shù)的單調(diào)性時,要嚴(yán)格按照取值——作差——變形——判號——結(jié)論幾個步驟進行,變形要變的徹底.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)是定義在區(qū)間上的偶函數(shù),且滿足
(1)求函數(shù)的周期;
(2)已知當(dāng)時,.求使方程上有兩個不相等實根的的取值集合M.
(3)記,表示使方程上有兩個不相等實根的的取值集合,求集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,ABCD是一塊邊長為100m的正方形地皮,其中AST是一半徑為90m的扇形小山,其他部分都是平地.一開發(fā)商想在平地上建一個矩形停車場,使矩形的一個頂點P在弧ST上,相鄰兩邊CQ,CR落在正方形的邊BC,CD上,求矩形停車場PQCR的面積S的最大值和最小值(結(jié)果取整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(05福建卷)是定義在R上的以3為周期的偶函數(shù),且,
則方程=0在區(qū)間(0,6)內(nèi)解的個數(shù)的最小值是 (   )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)是定義在上的奇函數(shù),給出下列命題:
(1);
(2)若在 [0, 上有最小值 -1,則上有最大值1;
(3)若在 [1, 上為增函數(shù),則上為減函數(shù);
(4)若時,; 則時,。
其中正確的序號是:                  。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)是奇函數(shù),則的值為(   )
A.2013B.2012C.2011D.2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)為奇函數(shù)的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)f(x) (x∈R)是奇函數(shù),函數(shù)g(x) (x∈R)是偶函數(shù),則
A.函數(shù)f[g(x)]是奇函數(shù)B.函數(shù)g[f(x)]是奇函數(shù)
C.函數(shù)f(x)g(x)是奇函數(shù)D.函數(shù)f(x)+g(x)是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)是奇函數(shù),則  (      )
A.1B.-1 C.1或-1D.無法確定

查看答案和解析>>

同步練習(xí)冊答案