求函數(shù)y=-1的定義域和值域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:湖北省荊州中學(xué)2008-2009學(xué)年上學(xué)期高一期中考試(數(shù)學(xué)文) 題型:044
設(shè)函數(shù)).
(1)求函數(shù)y=f(2x)的定義域;
(2)用函數(shù)單調(diào)性的定義證明)在其定義域上為減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省石室中學(xué)2011-2012學(xué)年高一10月月考數(shù)學(xué)試題 題型:044
已知定義在區(qū)間[0,2]上的兩個函數(shù)f(x)和g(x),f(x)=x2-2ax+4(a≥1),g(x)=.
(1)求函數(shù)y=f(x)的最小值m(a);
(2)若對任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:湖北省荊州中學(xué)2011-2012學(xué)年高一上學(xué)期期中考試數(shù)學(xué)(A)試題(人教版) 題型:044
已知定義在區(qū)間[0,2]上的兩個函數(shù)f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=.
(1)求函數(shù)y=f(x)的最小值m(a)及g(x)的值域;
(2)若對任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省盧氏一高2012屆高三上期期末調(diào)研考試數(shù)學(xué)文科試題 題型:044
定義在R上的函數(shù)f(x)=ax3+bx2+cx+3同時滿足以下條件:
①f(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
②(x)是偶函數(shù);
③f(x)在x=0處的切線與直線y=x+2垂直.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)設(shè)g(x)=4lnx-m,若存在x∈[1,e],使g(x)<(x),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(10) 題型:044
定義在R上的函數(shù)f(x)=ax3+bx2+cx+3同時滿足以下條件:
①f(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
②(x)是偶函數(shù);
③f(x)在x=0處的切線與直線y=x+2垂直.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)設(shè)g(x)=4lnx-m,若存在x∈[1,e],使g(x)<(x),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com