已知f(x)=ax3-2ax2+b,(a≠0).
(Ⅰ)求出f(x)的極值點,并指出其是極大值點還是極小值點;
(Ⅱ)若f(x)在區(qū)間[-2,1]上最大值是5,最小值是-11,求f(x)的解析式.
【答案】
分析:(1)分類討論參數(shù)a,滿足f′(x)=0的點附近的導數(shù)的符號的變化情況,來確定極值點,從而求出極值;
(2)先求出f(x)在區(qū)間[-2,1]的極值,將f(x)的各極值與其端點的函數(shù)值比較,其中最大的一個就是最大值,最小的一個就是最小值,建立兩個等量關(guān)系,求出參數(shù)a,b即可.
解答:解(Ⅰ)∵f(x)=ax
3-2ax
2+b,
∴f′(x)=3ax
2-4ax=ax(3x-4)
令f′(x)=0,得
ia<0時
函數(shù)的極值點是0,
,0是極小值點,
是極大值點(5分)
ii、a>0時
同理可以驗證0是極大值點,
是極小值點(6分)
(Ⅱ)f(x)在區(qū)間[-2,1]上最大值是5,
最小值是-11,f′(x)=0,
若a>0,
(8分)
因此f(0)必為最大值,∴f(0)=5,得b=5,
∵f(-2)=-16a+5,f(1)=-a+5,∴f(1)>f(-2)
∴f(-2)=-16a+5=-11,∴a=1
∴f(x)=x
3-2x
2+5;(11分)
若a<0,同理可得f(0)為最小值,∴f(0)=-11,得b=-11,
∵f(-2)=-16a+5,f(1)=-a+5,∴f(-2)>f(1)
∴f(-2)=f(x)
max=5,∴a=-1∴f(x)=-x
3+2x
2-11.(14分)
點評:本題主要考查了利用導數(shù)研究函數(shù)的極值,以及待定系數(shù)法求函數(shù)解析式和利用導數(shù)求閉區(qū)間上函數(shù)的最值,屬于中檔題.