已知拋物線的方程為,直線的方程為,點關于直線的對稱點在拋物線上.
(1)求拋物線的方程;
(2)已知,點是拋物線的焦點,是拋物線上的動點,求的最小值及此時點的坐標;
(3)設點、是拋物線上的動點,點是拋物線與軸正半軸交點,是以為直角頂點的直角三角形.試探究直線是否經(jīng)過定點?若經(jīng)過,求出定點的坐標;若不經(jīng)過,請說明理由.
(1);(2)詳見解析;(3).

試題分析:(1)求出點關于直線的對稱點的坐標,然后將對稱點的坐標代入拋物線的方程求出的值,從而確定拋物線的方程;(2)結合圖象與拋物線的定義確定點、、三點共線求出的最小值,并確定的直線方程,將直線方程與拋物線方程聯(lián)立求出點的坐標;(3)上點,利用得到得到之間的關系,從而確定直線的方程,結合之間的關系,從而確定直線所過的定點.
(1)設點關于直線的對稱點為坐標為
解得,
把點代入,解得
所以拋物線的方程為;
(2)是拋物線的焦點,拋物線的頂點為,
拋物線的準線為,
過點作準線的垂線,垂足為,由拋物線的定義知,
,當且僅當、、三點共線時“”成立,
即當點為過點所作的拋物線準線的垂線與拋物線的交點時,取最小值,

,這時點的坐標為;
(3)所在的直線經(jīng)過定點,該定點坐標為
,可得點的坐標為,
,,顯然
,,
,即,
直線的方程為,
,
所以直線經(jīng)過定點.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(2013·上海高考)如圖,已知雙曲線C1-y2=1,曲線C2:|y|=|x|+1.P是平面內(nèi)一點.若存在過點P的直線與C1,C2都有共同點,則稱P為“C1-C2型點”.

(1)在正確證明C1的左焦點是“C1-C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證).
(2)設直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1-C2型點”.
(3)求證:圓x2+y2=內(nèi)的點都不是“C1-C2型點”.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的中心為原點,長軸在軸上,離心率,又橢圓上的任一點到橢圓的兩焦點的距離之和為.

(1)求橢圓的標準方程;
(2)若平行于軸的直線與橢圓相交于不同的兩點、,過、兩點作圓心為的圓,使橢圓上的其余點均在圓外.求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點,口寬EF=4米,高3米
(1)建立適當?shù)闹苯亲鴺讼,求拋物線方程.
(2)現(xiàn)將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時,所挖的土最少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設直線與雙曲線的兩條漸近線分別交于,若滿足,則雙曲線的離心率是         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知橢圓的焦點在軸上,離心率為,且經(jīng)過點
(1)求橢圓的標準方程;
(2) 以橢圓的長軸為直徑作圓,設為圓上不在坐標軸上的任意一點,軸上一點,過圓心作直線的垂線交橢圓右準線于點.問:直線能否與圓總相切,如果能,求出點的坐標;如果不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設拋物線的焦點為,已知為拋物線上的兩個動點,且滿足,過弦的中點作拋物線準線的垂線,垂足為,則的最大值為     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是雙曲線的右支上一點,、分別是圓上的點,則的最大值等于           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線=1的左支上一點M到右焦點F2的距離為18,N是線段MF2的中點,O是坐標原點,則|ON|等于(  )
A.4B.2 C.1 D.

查看答案和解析>>

同步練習冊答案